- Coriolis Mass Flowmeters are used for the measurement of the mass flow and density to the highest accuracy. The fluid need not be electrically conductive.
- No moving parts, no wear, no maintenance
- Ex-Design TÜV 99 ATEX 1443X [Europe]
 - II 2G EEx emd [ib] IIC T6: (≤ DN 40 [1-1/2"])
 - II 1/2G EEx emd [ib] IIC T6: (DN 50 [2"] DN150 [4"])
 - II 2 D T115 °C ... T_{Medium} IP67

Ex-Design FM [USA]

- Class I, Div. 1
- Class I, Zone 1
- Class I, Div. 2
- Class I, Zone 2

Converter with DSP-Technology

- the latest digital filter technology assures detection of even the weakest sensor signals
- Operate using a Magnet Stick without opening the housing
- Simultaneous measurement of the mass flowrate, density and temperature
- Type-tested according NAMUR
- Option
 - Expanded density calibration with temperature compensation
 - Housing as secondary containment
 - EHEDG-Certified

4-Wire Compact Design Digital-Signal-Processor Converter Technology

Content

Assembly and Installation Flowmeter Primary	. 4
Installation Instructions MC2 Flowmeter primary	. 6
MS2 Flowmeter primary	. 8
Specifications: Flowmeter primary FCM2000-IVIC2	. 9
Specifications: Flowmeter FCM2000 ME2	12
Specifications: Converter FCM2000-ME2	14
Technical Specifications: Converter	10
Interconnection Diagram: Flowmeter Primary MC2/	17
Converter ME2	20
Interconnection Diagram: Flowmeter Primary MS2/	
Converter ME2	21
Interconnection Diagram: Input and Output Signals,	~~
	22
Fieldhus, Supply Power	23
Interconnection Diagram: Ex-Design ATEX EM MC2	23
Safety Specifications for the In- and Outputs. Model	21
FCM2000-MC27B	25
Isolation: MC26, MC27	26
Dimensions Compact Design, Flanged Construction	
"E" to "F", DIN/ASME	27
Dimensions, Remote Design, Flanged Construction	~~
"E" TO "F", DIN/ASME	28
"G" to "I". DIN/ASME	29
Dimensions, Remote Design, Flanged Construction	
"G" to "L", DIN/ASME	30
Dimensions, Compact Design, Food Industry Fitting	
"E" to "F", DIN 11851	31
Dimensions, Remote Design, Food Industry Fitting	00
"E" TO "F", DIN 11851	32
G" to K" DIN 11851	33
Dimensions, Remote Design, Food Industry Fitting	00
"G" to "K", DIN 11851	34
Dimensions, Compact Design, Tri-Clamp DIN 32676	
"E" to "F"	35
Dimensions, Remote Design, Tri-Clamp DIN 32676	00
"E 10 "F Dimensions Compact Design Tri-Clamp DIN 32676	30
G" to K"	37
Dimensions, Remote Design, Tri-Clamp DIN 32676	01
"G" to "K"	38
Dimensions, Remote Design, MS21	39
Dimensions, Converter Field Mount Housing, Rectangular	40
Ordering information	41
Questionnaire: Coriolis Mass Flowmeter FCM2000	45

General

The FCM2000 is the economical and uncomplicated ABB Mass Flowmeter with the new DSP-converter mounted integral or remote from the flowmeter primary. The compact design reduces the installation and cabling expenses. The flowrate information can be viewed directly at the meter site and the meter can be installed in your system in a more space efficient manner.

The FCM2000 operates according to the Coriolis Principle. The design offers the following features:

- Space saving, rugged design.
- Wide flow range; meter size "S" (DN 1,5 [1/16"]) to meter size "L" (DN 150 [6"]).
- Variety process connection options.
- Two separate current outputs for flowrate and density as well as a pulse output.
- · Contact in- and outputs.
- HART-Protokoll, PROFIBUS PA, FOUNDATION Fieldbus.
- Ex-Approval: The Ignition Protection Type of the output circuits can be user selected as "i" or "e" and is determined by the Ignition Protection Type of the circuits connected. The Ignition Protection Type can be changed after the installation has been completed. The contact outputs can be configured as NAMUR-Outputs by the user.
- Allowable fluid temperatures up to 180 °C, CIP-capable
- Lighted, 2-line display with data entry using a Magnet Stick without opening the housing.
- Certified per EHEDG

Mass Converter with Digital Signal Processor (DSP)

The converter for the FCM2000 incorporates a digital signal processor (DSP) with which it is possible to measure the mass flow and density values to the highest precision. The Coriolis sensor signals are immediately converted into digital information without any intermediate analog steps.

Excellent long term stability and reliability together with fast signal processing are achieved with the new DSP-Converter.

Self diagnostic functions for the flowmeter primary and the converter coupled with absolute zero stability are the essential advantages, which are necessary, if reliance on the measurements is to be assured.

The FCM2000 converter provides advantages to the user, especially

- when mass flowrate is to be metered to the highest accuracy.
- when the fluid density must be determined.
- when the components of a recipe are to be mixed together.
- when metering non-conductive or highly viscous fluids or solids loaded liquids.
- in batch filling systems.

Operating Principle

When a mass flows through a vibrating pipe, Coriolis forces are generated which bend and twist the pipe. These very small pipe deformations are measured by optimally mounted sensors and electronically evaluated. Because the measured phase shift of the sensor signals is proportional to the mass flowrate, the Coriolis Mass Flowmeter measures the mass flowrate in the flowmeter directly. The metering principle is independent of the density, temperature, viscosity, pressure and conductivity of the fluid.

The meter tubes always vibrate at resonance. This resonant frequency, at the operating conditions, is a function of the meter tube geometry, the characteristics of the flowmeter materials and the mass of the fluid in the meter tube, which is also vibrating. It provides an accurate measure of the density of the fluid being metered. Summarizing, it is possible to simultaneously measure the mass flowrate, fluid density and temperature with the Coriolis Mass Flowmeter.

System Design

The flowmeter primary consists of two one piece, formed meter tubes arranged in parallel through which the fluid flows. A twist and bend resistant mounting structure, which connects the inand outlet of the flowmeter, is especially designed to isolate the meter tube from external forces and moments.

Fig. 2: FCM2000 Parallel Meter Tube Design

The meter tubes are welded at their in- and outlet ends to flow splitters. Therefore there is no direct coupling to the process connections. This approach appreciably minimizes the effects of external vibrations on the measurements.

Long life is assured by elimination of weld seams in the highly stressed areas and by hard silver soldering, under vacuum, the mounts for the meter tube, drivers and sensors. Exceptional long term stability is assured by vacuum stress relieving the meter tubes.

Easy installation, wide flow ranges and a variety of process connections and last, but not least, the quick amortization of the costs make the FCM2000 an instrument which can be optimally applied in production processes.

Fig. 3: Double Tube Flowmeter Primary FCM2000

Assembly and Installation Flowmeter Primary

Inspection

Before installing the flowmeter primary, check for physical damage due to possible improper handling during shipment. All claims for damage are to be made promptly to the shipper.

Installation Requirements/System Design Information

The FCM2000 is suitable for both in- and outdoor installations. The standard instrument meets the requirements of Protection Class IP 67. The primary is bidirectional and can be installed in any orientation. It is important to assure that the meter tubes are always completely filled with fluid.

The corrosion resistance of the fluid wetted materials must be evaluated.

The following points are to be considered during installation:

The preferred flow direction is indicated by the arrow on the flowmeter primary. Flow in this direction will be indicated as positive (a forward/reverse flow calibration is available as on option).

Installation Orientation

• The FCM2000 operates in all orientations. The optimal installation orientation is vertical with the flow upwards.

Supports

 In order to support the weight of the flowmeter primary and to assure reliable measurements when adverse external effects exist (e.g. vibrations), the primary should be installed in rigid pipelines. Two supports or hangers should be installed symmetrically and stress free in close proximity to the in- and outlet process connections.

Shut Off Devices

- To conduct a system zero adjustment, shut off devices are required in the pipeline.
 - in horizontal installations at the outlet
 - in vertical installations at the inlet
- When possible, shut off devices should be installed both upand downstream of the flowmeter primary.

Inlet Straight Sections

• The mass flowmeter does not require any flow conditioning inlet straight sections. Care should be exercised to assure that any valves, gates, sight glasses etc. do not cavitate and are not set into vibration by the flowmeter primary.

System Design Information

- The presence of gas bubbles in the fluid can result in erroneous measurements, particularly in the density measurement. Therefore the flowmeter primary should not be installed at the highest point in the system. Advantageous are installations in low pipeline sections, e.g. at the bottom of a U-section in the pipeline (invert).
- Long drop lines downstream from the flowmeter primary should be avoided to prevent the meter tube from draining.
- The pipelines should be connected in a stress free manner.
- The flowmeter primary should not come in contact with any other objects. Attachments to the housing are not permissible.
- When the cross-section of the connecting pipeline is larger than the flowmeter primary size, suitable standard reducers can be installed.
- If strong vibrations exist in the pipeline they should be damped using elastic pipeline elements. The damping devices must be installed beyond the supported flowmeter section and outside of the section between the shut off devices. The direct connection of flexible elements to the flowmeter primary should be avoided.
- Care should be exercised to assure that any dissolved gases, which may be present in many liquids, do not outgas. The back pressure at the outlet should be at least 0.2 bar.
- Assure that operation below the vapor pressure cannot occur when a vacuum exists in the meter tube.
- The flowmeter primary should not be installed in the vicinity of strong electromagnetic fields, e.g. near motors, pumps, transformers etc.
- When operating more than one meter in one or multiple interconnected pipelines, the meter primaries should be spaced distant from each other or the pipelines should be decoupled to prevent cross talk.
- Request special installation requirements for meter size "L".

D184S068U02

Zero Adjustment

• In order to adjust the zero under operating conditions it must be possible to reduce the flowrate "ZERO" while the meter tube remains completely filled. A bypass line is optimal when the process cannot be shut down. It is important for accurate measurements that during the zero adjustment there are no gas bubbles in the flowmeter primary. It is also important that the pressure and temperature in the meter tube be the same as those which exists during operation.

Fig. 4: Zero Adjustment with a By-Pass Line

Installation Instructions MC2 Flowmeter primary

Vertical Installations

The optimal installation orientation is a vertical installation with an upward flow as shown in the following figure. This has the advantage that any solids contained in the fluid will settle downward and any gas bubbles will move upward out of the meter tube when the flowrate is zero. Additionally, it is easy to drain the meter tube. Deposits can thereby be avoided.

Fig. 5: Vertical Installation, Self-Draining (upward flow)

Horizontal Installations

Horizontal Installation, Self Draining

Fig. 7: Horizontal Installation, Self Draining, $\alpha 2 - 4^{\circ}$

Installation in a Drop Line

The installation recommendation shown in the following figure is only possible if a pipeline reduction or orifice with a smaller crosssection can be installed to prevent the flowmeter primary from partially draining during the measurements.

Fig. 8: Installation in a Drop Line

Difficult Installation Locations

The accumulation of air or gas bubbles in the meter tube can lead to increased inaccuracies. Some difficult installations are shown in the following figure.

Installations at the highest point in the pipeline (Figure A) can result in the formation of air pockets which can lead to appreciable inaccuracies.

Another difficult installation condition is immediately upstream of a free discharge (Figure B) in a drop line.

Fig. 9: Difficult Installation Conditions

Information:

Check that the coordination between the flowmeter primary and the converter is correct. The instruments which belong together have the same end characters on the Instrument Tag, e.g., X001 with Y001 or X002 with Y002.

Pressure Drop

The pressure drop through the instrument is a function of the properties of the fluid and the flowrate. The Selection Program CD-CALC can be used to calculate the pressure drop.

MS2 Flowmeter primary

Flowmeter primary MS2 DN1.5 installation

- Horizontal installation is recommended. If vertical installation is required, a flow direction from below to above is recommended for better elimination of air bubbles. In order for air to be removed from the flowmeter primary, the flow speed in the flowmeter primary must be at least 1 m/s. If the fluid contains solid particles, especially in conjunction with too little flow, a level installation location of the flowmeter primary and positioning of the input flange completely on top is recommended so that the particles can be more easily flushed out. In order to avoid a partial emptying of the flowmeter primary, a sufficient back pressure must be present at the unit (min. 0.1... 0.2 bar / 1.45 ... 2.9 psi).
- Install the flowmeter primary in a vibration-free way to a wall or a steel frame.
- Position the flowmeter primary at a low location in the system in order to avoid a negative pressure in the flowmeter primary, that could lead to air or gas separation in the fluid.
- Ensure that the flowmeter primary is not run empty (in the normal operation) as this can lead to inaccurate measurements.

Flowmeter primary MS2 DN3/DN6 installation

For light flow, a horizontal installation location is recommended since air bubbles are easier to remove in this position. If the fluid is non-permanent or contains solid particles, a vertical installation is not recommended.

Specifications: Flowmeter primary FCM2000-MC2

Fig. 10: Flowmeter Primary FCM2000-MC2

Meter Sizes

"E" (DN 20 [3/4"]); "F" (DN 25 [1"]); "G" (DN 40 [1-1/2"]); "H" (DN 50 [2"]);"I" (DN 65 [2-1/2"]\); "J" (DN 80 [3"]); "K" (DN 100 [4"]); "L" (DN 150 [6"])

Flow Ranges

Meter Size			Max. Flow Range [Q _{max}]				
	DN	Inch	[kg/	/min]	[lbs./min]		
"E"	20	3/4	0 to	100	0 to	220	
"F"	25	1	0 to	160	0 to	352	
"G"	40	1-1/2	0 to	475	0 to	1045	
"H"	50	2	0 to	920	0 to	2024	
"I"	65	2-1/2	0 to	1890	0 to	4158	
"J"	80	3	0 to	2460	0 to	5412	
"K"	100	4	0 to	4160	0 to	9152	
"L"	150	6	0 to	11000	0 to	24200	

Enclosure classification: IP65/IP67, NEMA 4X

Accuracy, Flowrate > DN 20 (sizes "F", "G", "H", "I", "J", "K")

 \pm 0.4 % of rate \pm 0.02 % of $\rm Q_{max}$

 \pm 0.25 % of rate \pm 0.02 % of Q_{max}

 ± 0.15 % of rate ± 0.01 % of Q_{max} (Accuracy of measured value + zero deviation)

Accuracy, Flowrate DN 20 (size "E")

 \pm 0.4 % of rate \pm 0.01 % of $\rm Q_{max}$

- \pm 0.25 % of rate \pm 0.01 % of Q_{max}^{max}
- \pm 0.15 % of rate \pm 0.005 % of $\ddot{\mathrm{Q}}_{max}$
- (Accuracy of measured value + zero deviation)

Accuracy, Flowrate DN 150 (size "L")

- \pm 0,4% of rate \pm 0,05% v. Q_{max}
- \pm 0,25% of rate \pm 0,05% v. Q_{max}
- ± 0,15% of rate ± 0,05% v. Q_{max}

Influence of medium temperature

 \pm 0,004 % of $Q_{max}/1K$

Reproducibility, Flowrate

0.1 % of rate for nom. deviation \pm 0.15 % 0.15 % of rate for nom. deviation \pm 0.25 % and 0.4 %

Measurement Range, Density

0.5 kg/dm³ to 3.5 kg/dm³

Accuracy, Density

Standard calibration ± 5 g/l Expanded density calibration ± 1 g/l With separated technique tosignal cable is included in calibration and may neither be shortened nor extended after-wards!

Reproducibility, Density

$\pm 0.1 \text{ g/l}$

Accuracy, Temperature

-50 °C to +180 °C < 1.0 °C

Reference Conditions

Calibration medium

Water 20 °C, (+ 10 K/- 5 K) Pressure 0.5 ... 6 bar

Ambient Temperature

20 °C, (+ 10 K/- 5 K)

Power Supply

Nominal voltage per name plate U_N \pm 1 %

Warm-up Time

30 Min.

Installation according to this specifications

no visible gas phase no external mechanic or hydraulic interferences, specifically cavitation

Output at calibration

Pulse output

Analog output effects

Same as pulse output ± 0.1 % of rate

Materials

Flowmeter Primary

Fluid wetted parts Stainless steel 1.4571 / 316 Ti 1.4435 / 316L Hastelloy C4/2.4610 EHEDG Certified for flowmeter primary made of 1.4435 / 316L Option: fluid wetted parts acc. to NACE MR0175 (ISO15156) Housing Stainless steel 1.4301

Converter

Housing

light metall casting, painted central part: RAL 7012 top cover: RAL 9002 thickness of painting: 80-120 µm

Fluid Temperature

Standard: -50 °C to 180 °C; Ex: -20 °C to +150 °C/180 °C for ATEX and FM Ex: opt. -40 °C to +150 °C/180 °C for ATEX and FM

Ambient Temperature

-25 °C to +60 °C;

Ex: -20 °C to +60 °C for ATEX and FM Ex: opt. -40 °C o + 60 °C for ATEX and FM

Process Connections

Flanges DIN/ASME Tri-Clamp DIN 32676

• DN 15 - DN 50: Series 3

- DN 65 DN 100: Series 1
- Food Industry fittings DIN 11851

The max. allowable operating pressure is a function of the process connection type, the fluid temperature, the bolts and the gaskets.

Pressure Rating

PN 16, PN 40, PN 100 (to DN 80 [3"]) CL 150, CL 300, CL 600 (to DN 80 [3"])

Housing as secondary containment

max. 40 bar

Pressure Equipment Directive 97/23/EG

Conformity evaluation category III, fluid group 1, gas, diagramme 6

Corrosion resistance of measuring pipe material to measuring medium has to be considered.

Material strength for process connections

Process		Size	PS _{max.}	TS _{max.}	TS _{min.}
connection	DN	Inch	[bar]	[°C]	[°C]
Thread acc.	15 - 40	1/0" - 1 1/0"	40	140	-40
DIN 11851	50 - 100	2" - 4"	25	140	-40
Tri-Clamp acc.	15 - 50	1/2" - 2"	16	120	-40
DIN 32676	65 - 100	2 1/2" - 4"	10	120	-40

Material Loads Curves for Flanged Flowmeters

Fig. 11: DIN-Flanges SS 1.4571 [316Ti] to DN 100 [4"]

Fig. 12: ASME-Flanges SS 1.4571 [316Ti] to DN 100 [4"]

Fig. 13: Pressure Drop Curves FCM2000

Viscosity Range

Max. dyn. viscosity: \leq 1 Pas (= 1000 mPas = 1000 cP) for higher viscosities, please contact ABB-Sales offices.

Ex-Approval ATEX, MC26B, MC27B

EU-Type Examination Certificate:

 $\begin{array}{l} \mbox{TÜV 99 ATEX 1443 X} \\ \mbox{II 2G EEx emd [ib] IIC T6: (\leq DN 40 [1-1/2"]$)} \\ \mbox{II 1/2G EEx emd [ib] IIC T6: DN 50 [2"]-DN 150 [6"]$)} \\ \mbox{The internal volume for meter sizes "H" DN 50 [2"] to "L" DN 150 [6"]$ corresponds to Category 1 (Zone 0). \\ \mbox{II 2D T115°C } ... T_{Medium}$ IP67 (T_Ambient -20 °C ... +60 °C)

Maximum Allowable Fluid Temperatures as a Function of the Ambient Temperature, Temperature Class and the Flowmeter Size

Meter Size	DN 20 [3/4"]–DN 150 [6"]			
Ambient Temperature	40 °C	50 °C	60 °C	
Temperature Class				
T2	180 °C	-	-	
ТЗ	165 °C	140 °C	-	
T4	100 °C	100 °C	80 °C	
T5	65 °C	65 °C	65 °C	
T6	50 °C	50 °C	50 °C	

These values also apply to insulated Mass Flowmeters.

Ex-Zulassung FM, MC26C, MC27C

Explosion Proof	XP-IS/I, II, III/1/BCDT/T* TA = *; Type NEMA 4X
Dust Ignition Proof	DIP/II, III/1 EFG/T* TA = *; Type NEMA 4X
Intrinsically Safe	IS/I, II, III/1/BCDEFG/T* TA = *; Type NEMA 4X
Non-Incendive	NI/I, II, III/2/ABCDFG/T* TA = *; Type NEMA 4X
	•

T* see FM Temperature Class

In case of a remote installation the length of the provided cable between sensor and transmitter must be at least 5 m.

FM Temperature Class and Ambient temperature

Meter Size	DN 20 [3/4"]-DN 150[6"]			
Ambient Temperature	-40 °C	-40 °C	-40 °C	
	to	to	to	
	+40 °C	+50 °C	+60 °C	
Temperature Class				
T2	180 °C	-	-	
ТЗ	165 °C	140 °C	-	
T4	100 °C	100 °C	80 °C	
T5	65 °C	65 °C	65 °C	
T6	50 °C	50 °C	50 °C	

Ex-Approval FM, MC21O, MC23O

Nonincendive Class I,II, III, Division 2, Groups A, B, C, D, F, G/T6 Ta = 60 °C, NEMA 4X.

Specifications: Flowmeter Primary MS21

Meter Sizes

"S" (DN 1,5 [1/16"]); "T" (DN 3 [1/8"]); "U" (DN 6 [1/4"])

Flow Ranges

Meter Siz	es	Max. Flow Range [Q _{max}]				
		[kg	/h]	[lbs./min]		
"S" DN 1,5	[1/16"]	0 to	65	0 to	143	
"T" DN 3[1/	/8"]	0 to	250	0 to	550	
"U" DN 6[1/	/4"]	0 to	1000	0 to	2200	

Enclosure classification: IP65

Accuracy, Flowrate

 \pm 0.4 % of rate \pm 0.02 % of $\rm Q_{max}$

 \pm 0.25 % of rate \pm 0.02 % of \dot{Q}_{max}

 \pm 0.15 % of rate \pm 0.01 % of Q_{max} (Accuracy of measured value + zero deviation))

Reproducibility, Flowrate

0.1 % of rate for nom. deviation \pm 0.15 % 0.15 % of rate for nom. deviation \pm 0.25 % and 0.4 %

Measurement Range, Density

0.5 kg/dm³ to 3.5 kg/dm³

Accuracy, Density

Standard calibration ± 10 g/l Temperature range 0 to 100 °C Expanded density calibration upon request With separated technique to signal cable is included in calibration and may neither be shortened nor extended after-wards!

Accuracy, Temperature

-50 °C to +180 °C < 1.0 °C

Reference Conditions

Calibration medium

Water 20 °C, (+ 10 K/- 5 K) Pressure 0,5 ... 6 bar

Ambient Temperature

20 °C, (+ 10 K/- 5 K)

Power Supply

Nominal voltage per name plate $U_N \pm 1 \%$

Warm-up Time 30 Min.

Installation according to this specifications

no visible gas phase no external mechanic or hydraulic interferences, specifically cavitation

Output at calibration

Pulse output

Analog output effects

Same as pulse output ± 0.1 % of rate

Materials

Flowmeter Primary

Fluid wetted parts 1.4435 / 316L Housing Stainless steel 1.4404

Fluid Temperature

Standard: -50 °C to 180 °C: DN 3, DN 6 -50 °C to +125 °C: DN 1.5

Ambient temperature

-25 °C to +60 °C

Process Connections

G1/4" ISO 228-1 1/4" NPT ASME B1.201 Flanges DIN/ASME for DN 6 [1/4"] Food Industry fittings DIN 11851 for DN 6 [1/4"] The max. allowable operating pressure is a function of the process connection type, the fluid temperature, the bolts and the gaskets.

Pressure Rating

Flanges PN 40, CL 150, Thread G 1/4", 1/4" NPT, PN 100

Installation

For detailed installation instructions please refer to the operating instructions.

Fig. 15: Pressure Drop MS21, DN 1,5 [1/16"]

Fig. 16: Pressure Drop MS21, DN 3 [1/8"]

Fig. 17: Pressure Drop MS21, DN 6 [1/4"]

Specifications: Converter FCM2000-ME2

Fig. 18: Converter FCM2000 Field Mount Housing, rectangular

Flow Range

User selectable between 0.01 $\rm Q_{max}$ and 1 $\rm Q_{max}$

Protection Class

IP65 / IP67, NEMA 4X

Electrical Connections

Cable connectors M20 x 1.5 or $1/2^{\circ}$ NPT Max. signal cable length for remote mounted design 50 m (for longer length upon request)

Supply Power

Power Supply Voltage

85–253 V AC, 47–63 Hz 20,4–26,4 V AC, 47–63 Hz 20,4–31,2 V DC Ripple: 5 %

Power

 $S \le 25 VA$

Response Time

For a 0–99 % step change (corresponds 5 τ) \geq 1 s

Ambient Temperature

-20 °C to 60 °C

Construction

Cast light metal field mount housing, painted Center section: RAL 7012, dark gray Cover: RAL 9002, light gray Farbanstrich: $80 - 120 \ \mu m$ thick

Forward/Reverse Flow Metering

The flow direction is indicated in the display by a direction arrow and is signaled by an optocoupler for an external alarm.

Display

2x16-character LCD-Dot-Matrix display with LED background lighting. Both lines can be user configured for the indication of mass flowrate, volume flowrate, density or temperature. Flow totalization, 7digit with overflow counter in mass or volume units.

Ex Approval FM, ME210

Nonincendive Class I, II, III Division 2, Groups A, B, C, D, F, G/T6 Ta = 60 $^\circ \text{C},$ NEMA 4X

Fig. 19: Converter Keypad and Display

After the four mounting screws (1-4) have been loosened the converter can be repositioned in 4 orientations to assure optimum readability.

Fig. 20: Magnet Stick Operation

Magnetic stick operation makes it possible to configure the converter and enter data without removing the housing cover.

Setting Parameters

Data can be entered in a number of different languages using the 3 buttons on the converter.

The converter housing can be rotated in each direction by approx. 180°. There are four positions into which the display can be plugged to assure optimum readability. In the multiplex mode the flowrate in %, direct reading engineering units or as a bargraph, the totalizer values forward or reverse and the TAG-No. can be alternately displayed in addition to the display selections for the 1st and 2nd lines.

Data Protection

All data values are stored in an NV-RAM for 10 years without supplementary power when the instrument is turned off or during a power outage. Additional process information safeguards are provided by a serial EEPROM in the converter which incorporates data up- and download features.

Hard- and Software coding according to NAMUR-recommendation NE53.

Information:

The instrument meets the NAMUR-recommendations NE21. electromagnetic compatibility of equipment of process- and laboratory technique and EMV guideline 89/336/EG (EN 50081-1,

EN 50082-2) as well as low voltage guideline 73/23/EG (EN 61010-1).

Current Output 1

Function: active 0/4–20 mA, selectable Load: 0 $\Omega \leq R_B \leq 560 \ \Omega$ Terminals: 31/32 Measurement uncertainty < 0.1 % of rate For output of mass flowrate, volume flowrate, density and temperature. Function user selectable in the software.

Current Output 2

Function: Passive Current Output 4–20 mA Load: 0 $\Omega \leq R_B \leq 600 \; \Omega$ Source voltage: 12 V \leq Us \leq 30 V Terminals: 33/34 Measurement uncertainty < 0.1 % of rate For output of mass flowrate, volume flowrate, density and temperature. Function user selectable in the software.

Fig. 21: Allowable Source Voltage as a Function of the Load Resistance at $I_{max} = 22 \text{ mA}$

Information:

Measurement uncertainty according to NAMUR-recommendation NE43.

Scaled Pulse Output

Scaled pulse output (max. 5 kHz) with a selectable pulse factor between 0.001 - 1000 pulses per selected engineering unit. The pulse width can be set from 0.1 to 2000 ms. The output is galvanically isolated from Current Output 1 and from Current Output 2.

Design	Passive	Active
Terminals	51, 52	51, 52
Operating voltage Operating current	$\begin{array}{l} 16 \text{ V} \leq \text{U}_{\text{CEH}} \leq 30 \text{ V} \text{ DC} \\ 0 \text{ V} \leq \text{U}_{\text{CEL}} \leq 2 \text{ V} \\ 0 \text{ mA} \leq \text{I}_{\text{CEH}} \leq 0.2 \text{ mA} \\ 2 \text{ mA} \leq \text{I}_{\text{CEL}} \leq 220 \text{ mA} \end{array}$	$\begin{array}{l} 16 \text{ V} \leq \text{U} \leq 30 \text{ V DC} \\ \text{Load} \geq 150 \text{ Ohm} \\ \text{fmax} = 5 \text{ kHz} \end{array}$
	When using a mechanical \geq 30 ms and fmax \leq 3 Hz	counter pulse widths are recommended
fmax	5 kHz	5 kHz
Pulse width	0.1 ms-2000 ms	0.1 ms-2000 ms

Contact Output

The following functions can be assigned to the contact output in the software:

System monitor: Normally open or normally closed contact Forward/reverse direction indication: closed for forward direction Max-Min alarm: Normally open or normally closed contact Terminals: 41, 42 "closed" 0 V < UCE, < 2 V

"open"

Contact Input

The following functions can be assigned to the contact input in the software:

Ext. Zero Return. When the meter tube empties the output signals can be turned off.

Ext. Totalizer Reset. The internal totalizers can be reset from an external contact.

 $\begin{array}{ll} \mbox{Terminals: 81, 82} \\ \mbox{"ON"} & 16 \mbox{ V} \le U_{KL} \le 30 \mbox{ V} \\ \mbox{"OFF"} & 0 \mbox{ V} \le U_{KL} \le 2 \mbox{ V} \\ \mbox{Internal resistance:} & R_i = 2k \end{tabular}$

All signal In-/Outputs are galvanically isolated from the input circuit and each other.

For MC27 please refere to page 21.

Interconnection Examples for Peripherals, Standard

Technical Specifications: Converter

The converter has three alternatives for digital communication:

The HART[®] protocol

The HART[®] protocol is used for communication between a process control system, handheld terminal and the field device. The digital communication uses an ac voltage superimposed on the current output which does not affect the connected instrumentation. This design is only available with the 4-20 mA current output option. The device configuration is performed via the three buttons directly on the device or alternatively via the configuration and operation software SMART VISION[®] and the associated HART DTM for SMART VISION[®]. (Further information see below) or separate interface description part no. D184B108U07. The system is registered with the HART Communication Foundation.

HART[®] protocol

Fig. 23: Communication via HART protocol

Transmission method

FSK modulation on voltage output 4-20 mA according to Bell 202 standard.

Max. signal amplitude 1.2 mA_{ss}

Resistance voltage outputmin. 250 Ω , max. = 560 Ω

	(Ex: max. 300 Ω)
Cable	AWG 24 twisted
Max. cable length	1500 m
Baud rate	1200 Baud
Display	Log. 1: 1200 Hz
	Log. 0: 2200 Hz

The PROFIBUS PA protocol

The digital communication occurs according to IEC 61158-2. The device configuration is performed via the three buttons directly on the device or alternatively via the configuration and operation SMART VISION® software and the associated PROFIBUS PA DTM. Further information see separate PROFIBUS PA interface description part no. D184B093U35.

FOUNDATION Fieldbus FF

The digital communication occurs according to IEC 61158-2. The device configuration is performed via the three buttons directly on the device or via the system-integrated services or via the national configurator. Further information see separate interface description part no. D184B093U31.

System integration

In conjunction with the DTM (Device Type Manager) to the device, the communication (configuration, parameterization) can occur with the corresponding framework applications according to FDT 0.98 or 1.2 respectively. Other desired tool/system integrations (e.g. AMS-/ Siemens S7) are available.

SMART VISION[®], the ABB communication tool for HART[®] including all DTMs, is also available as a free 90-day test version.

PROFIBUS PA protocol

The PROFIBUS PA FCM2000 interface conforms to the Profile 3.0 (Standard PROFIBUS, EN 50170, DIN 19245 [PRO91]). The converter transmission signal is designed according to IEC 61158-2. The manufacturer-specific PROFIBUS PA Ident-No. of the FCM2000 is: 0849 hex. The device can be operated alternatively with the PROFIBUS standard Ident-No. 9700 hex or 9742 hex. Further information see separate interface description part no. D184B093U35. Stored data is preserved in the event of a power failure.

Bus cable

A shielded, twisted cable is recommended (in accordance to IEC 61158-2, types A or B are preferred). You can find further configuration information in detail in the "PROFIBUS suggested installation" brochure from ABB. Supplemental information is also available on our homepage www.abb.de/Feldbus as well as on the PROFIBUS international organization homepage www.profibus.com.

Information on voltage/current consumption

The middle current consumption of the FCM2000 amounts to 14 mA. In the event of an error, the integrated FDE function (= Fault Disconnection Electronic) integrated in the device is ensures that the current consumption can rise to a maximum of 26 mA. The upper limit of the voltage is electronically limited. The voltage on the bus line must lie in the range of 9-32 V.

Bus topology

Tree and or line structure is possible. The bus termination must take place passively on both wire ends of the bus main wire (RC-element R = 100 Ω , C = 1 μ F).

FOUNDATION Fieldbus

The FOUNDATION field bus interface of the FCM2000 is compliant to the specifications FF-890/891 as well as FF-902. The transmission signal of the converter is designed according to IEC 61158-2. The device is registered with the Fieldbus FOUNDA-TION. The registration is recorded at the Fieldbus FOUNDATION under the manufacturer ID: 0x000320 and the Device ID 0x0018.

Bus address settings

The bus address is automatically allocated at the FF. However, it can also be manually set in the system. The device detection occurs via an explicit combination of manufacturer ID, device ID and device serial number.

Information on voltage/current consumption

The middle current consumption of the FCM2000 amounts to 14 mA. In the event of an error, the integrated FDE function (= Fault Disconnection Electronic) integrated in the device is ensures that the current consumption can rise to a maximum of 26 mA. The upper limit of the voltage is electronically limited. The voltage on the bus line must lie in the range of 9-32 V.

System integration

For integration into a process control system, a DD file (device description), which contains the device description, as well as a CFF file (common file format) are required. The CFF file is required for the segment engineering. The engineering can be undertaken online or offline.

You can find both files, as well as the interface description on the supplied CD (part no.: D699D002U01). When needed, this can be re-ordered at any time from ABB at no cost. The files needed for operation can also be downloaded at www.abb.de/durch-fluss -> Coriolis Masse -> Fieldbus & HART Files.

Bus topology

Tree and or line structure is possible. The bus termination must take place passively on both wire ends of the bus main wire (RC-element R = 100 Ω , C = 1 μ F)

Abb. 24: Example for PROFIBUS PA interface connection

Abb. 25: Example for FOUNDATION Fieldbus interface connection

The bus terminator can also optionally occur via a M12 plug (see device ordering requirements) instead of the cable fitting. The device is then shipped completely prewired.

You can find appropriate connectors as well as additional accessories in the data sheet "Device overview PROFIBUS PA" (10/63-0.46 EN).

Fig. 26: Connection example for peripherals with PROFIBUS PA or FOUNDATION Fieldbus

Interconnection Diagram: Flowmeter Primary MC2/Converter ME2

Interconnection Diagram: Flowmeter Primary MS2/Converter ME2

Interconnection Diagram: Input and Output Signals, Supply Power MC2/ME2

Fig. 29: Interconnection Diagram

Interconnection Diagram: PROFIBUS PA/FOUNDATION Fieldbus, Supply Power

Fig. 30: Interconnection Diagram

Interconnection Diagram: Ex-Design, ATEX, FM MC2

Safety Specifications for the In- and Outputs, Model FCM2000-MC27B

	MC27B					MC27B	
Current Output	Intrinsically Safe EEx ib IIC/IIB				Non-intrinsically safe $U_T = 60 \text{ V}$		
Current output active Terminals 31/32 Terminal 32 is to be connected to PA.	U _O = 20 V I _O [mA] 100	P _O [mW] 500	EEx C _O [nF] 217	ib IIC L _O [mH] 3.8	EEx i C _O [nF] 1400	b IIB L _O [mH] 14.8	$U_{\rm T} = 30 \text{ V}$ $I_{\rm T} = 30 \text{ mA}$
	Curve: linea Internal cap Only for cor circuits with	Curve: linear Internal capacitance $C_I = 2.4 \text{ nF}$, internal inductance $L_I = 0.17 \text{ mH}$ Only for connection to a passive, intrinsically safe circuit or intrinsically safe circuits with the following maximum values: $U_I = 60 \text{ V}$					
Current output passive Terminals 33/34 Terminal 34 is connected to PA.	$U_l = 30 V$ $C_l = 2.4 \text{ nF}$ $I_l = 100 \text{ mA}$ $L_l = 0.17 \text{ mH}$			$U_T = 30 V$ $I_T = 30 mA$			
Contact output Terminals 41/42 Pulse output Terminals 51/52	$\begin{array}{llllllllllllllllllllllllllllllllllll$			U _T = 30 V I _T = 220 mA			
Contact input passive Terminals 81/82	$\begin{array}{ccc} U_{l} = 30 \ V & C_{l} = 2.4 \ nF \\ I_{l} = 250 \ mA & L_{l} = 0.17 \ mH \\ P_{l} = 1.1 \ W \end{array}$				U _T = 30 V I _T = 10 mA		

Special Requirements:

The output circuits are designed to be connected to either intrinsically safe or non-intrinsically safe circuits. A combination of intrinsically safe and non-intrinsically safe circuits is not permissible. For intrinsically safe current outputs Potential Equalization must exist along the entire circuit. The test voltage for non-intrinsically safe circuits is $U_T = 60 \text{ V}$.

The contact output and pulse output can be configured internally (Terminals 41/42, 51/52) as NAMUR-Contacts for connection to a NAMUR-Amplifier.

The meters are shipped with the black cable connectors installed. If the signal outputs are connected to intrinsically safe circuits, it is recommended that the light blue cable connectors included with the shipment be installed for the corresponding cable entries.

Important:

Ì If the ground wire PE in connection box of flowmeter is connected it has to be assured that no dangerous potential difference between the ground PE and potential balance can show up in the explosive area.

MC26B II 2G EEx em [ib] IIC T6 II 1/2G EEx em [ib] IIC T6

MC27B..

Isolation: MC26.., MC27..

FM Installation Class I, Div.1/ Div.2 FCM2000

Dimensions Compact Design, Flanged Construction "E" to "F", DIN/ASME

Fig. 33: Dimensions Compact Design, Flanged Construction "E" to "F", DIN/ASME

ISO Projection Method E

All dim´s in mm

Dimensions, Remote Design, Flanged Construction "E" to "F", DIN/ASME

All dim´s in mm ISO Projection Method E

Fig. 34: Dimensions, Remote Design, Flanged Construction "E" to "F", DIN/ASME

Dimensions, Compact Design, Flanged Construction "G" to "L", DIN/ASME

							Process Conn's			L.	5				Weight appr
N DN	leter Size Size) Incl	A 1	F	В	G MC23	G MC27	DN	DIN 2633 PN 16	DIN 2635 PN 40	DIN 2636 PN 64	DIN 2637 PN 100	ASME CL150	ASME CL300	ASME CL 600	kg
40	("G") 1-1/2	2 90	129	64	486	511	25 [1"]		879	914	914	910	922	932	21
							40 [1-1/2"]		780	813	813	810	825	843	23
							50 [2"]		940	967	979	970	980	1001	24
50	("H") 2	110	148	80	515	540	40 [1-1/2"]		1045	1078	1078	1075	1090	1108	33
							50 [2"]		940	967	979	970	980	1001	35
							65 [2-1/2"]		1100	1132	1148	1218	1228	1248	39
65	("I") 2-1/2	2 130	164	97	541	566	50 [2"]		1220	1248	1259	1250	1260	1281	44
							65 [2-1/2"]		1100	1132	1148	1218	1228	1249	49
							80 [3"]		1220	1248	1260	1240	1260	1282	51
80	("J") 3	140	186	108	568	593	65 [2-1/2"]		1330	1362	1378	1365	1375	1396	57
							80 [3"]		1220	1248	1260	1240	1260	1282	59
							100 [4"]	1450	1480	1494	1530	1500	1520	1568	70
100	("K") 4	170	215	131	612	637	80 [3"]		1640	1668	1680	1660	1680	1702	85
							100 [4"]	1450	1480	1494	1530	1500	1520	1568	92
							150 (6")	1736	1776	1816	-	1806	1826	-	
150	("L") 6	250	285	190	725	750	150 [6"]	2000	2040	2080	-	2070	2090	-	240

* Connecting dimensions for flanges according to ASME B16.5 (ANSI)

All dim´s in mm ISO Projection Method E

Fig. 35: Dimensions, Compact Design, Flanged Construction "G" to "L", DIN/ASME

Dimensions, Remote Design, Flanged Construction "G" to "L", DIN/ASME

Fig. 36: Dimensions, Remote Design, Flanged Construction "G" to "L", DIN/ASME

Dimensions, Compact Design, Food Industry Fitting "E" to "F", DIN 11851

Fig. 37: Dimensions, Compact Design, Food Industry Fitting "E" to "F", DIN 11851

Dimensions, Remote Design, Food Industry Fitting "E" to "F", DIN 11851

Dimensions, Compact Design, Food Industry Fitting "G" to "K", DIN 11851

						Process Conn's					Weight
DN (Size)	A	F	В	G (MC23)	G (MC27)	DN	L ₋₅	g	М	R	appr. kg
40 ("G")	90	129	64	486	511	25 [1"]	864	7	Rd 52 x 1/6	218	21
[1-1/2"]						40 [1-1/21/2"]	761	7	Rd 65 x 1/6	164	23
						50 [2"]	918	7	Rd 78 x 1/6	241	24
50 ("H")	110	148	80	515	540	40 [1-1/2"]	1025	7	Rd 65 x 1/6	233	33
[2"]						50 [2"]	918	7	Rd 78 x 1/6	177	35
						65 [2-1/2"]	1081	8	Rd 95 x 1/6	254	39
65 ("I")	130	164	97	541	566	50 [2"]	1197	7	Rd 78 x 1/6	291	44
[2-1/2"]						65 [2-1/2"]	1081	8	Rd 95 x 1/6	227	48
						80 [3"]	1200	8	Rd 110 x 1/4	281	51
80 ("J")	140	186	108	568	593	65 [2-1/2"]	1310	8	Rd 95 x 1/6	319	57
[3"]						80 [3"]	1200	8	Rd 110 x 1/4	258	59
						100 [4"]	1463	10	Rd 130 x 1/4	381	70
100 ("K")	170	215	131	612	637	80 [3"]	1618	8	Rd 110 x 1/4	401	85
[4"]						100 [4"]	1463	10	Rd 130 x 1/4	314	92

If this connection is supplied with an EHEDG-certified device, the device nominal sizes must correspond with the connection nominal sizes!

All dim's in mm ISO Projection Method E

Fig. 39: Dimensions, Compact Design, Food Industry Fitting "G" to "K", DIN 11851

Dimensions, Remote Design, Food Industry Fitting "G" to "K", DIN 11851

Mete	r Size		Process	s Conn's	L -5	g	G	F	В	Α	R	Weight
DN	("Size")) Inch			0	-						[kg]
			DN 25/[1"]	Rd 52 x 1/6	864	7					218	16
40	("G")	1-1/2	DN 40/[1-1/2"]	Rd 65 x 1/6	761	7	374	129	64	90	164	18
			DN 50 / [2"]	Rd 78 x 1/6	918	7					241	19
			DN 40/[1-1/2"]	Rd 65 x 1/6	1025	7					233	28
50	("H")	2	DN 50/[2"]	Rd 78 x 1/6	918	7	403	148	80	110	177	30
			DN 65 / [2-1/2"]	Rd 95 x 1/6	1081	8					254	34
			DN 50 / [2"]	Rd 78 x 1/6	1197	7					291	40
65	("I")	2-1/2	DN 65 / [2-1/2"]	Rd 95 x 1/6	1081	8	429	164	97	130	227	44
			DN 80 / [3"]	Rd 110 x 1/4	1200	8					281	47
			DN 65 / [2-1/2"]	Rd 95 x 1/6	1310	8					319	54
80	("J")	3	DN 80/[3"]	Rd 110 x 1/4	1200	8	456	186	108	140	258	56
			DN 100 / [4"]	Rd 130 x 1/4	1463	10					381	60
100	("K")	4	DN 80 / [3"]	Rd 110 x 1/4	1618	8	500	215	131	170	401	82
			DN 100 / [4"]	Rd 130 x 1/4	1463	10	Ī				314	86

If this connection is supplied with an EHEDG-certified device, the device nominal sizes must correspond with the connection nominal sizes!

All dim's in mm ISO Projection Method E

Fig. 40: Dimensions, Remote Design, Food Industry Fitting "G" to "K", DIN 11851

Dimensions, Compact Design, Tri-Clamp DIN 32676 "E" to "F"

Fig. 41: Dimensions, Compact Design, Tri-Clamp DIN 32676 "E" to "F"

Dimensions, Remote Design, Tri-Clamp DIN 32676 "E" to "F"

Dimensions, Compact Design, Tri-Clamp DIN 32676 "G" to "K"

= · · (•.=•)					((-
							25 [1"]	842	242	17
40 ("G")	1-1/2	90	129	64	486	511	40 [1-1/2"]	748	195	17
							50 [2"]	913	278	18
							40 [1-1/2"]	1012	275	27
50 ("H")	2	110	148	80	515	540	50 [2"]	913	225	26
							65 [2-1/2"]	1073	305	27
							50 [2"]	1192	335	36
65 "I")	2-1/2	130	164	97	541	566	65 [2-1/2"]	1073	275	37
							80 [3"]	1180	328	38
							65 [2-1/2"]	1302	378	45
80 ("J")	3	140	186	108	568	593	80 [3"]	1180	296	44
							100 [4"]	1448	430	46
100 (K")	1	170	215	121	610	627	80 [3"]	1598	440	71
100 ("K.)	4	170	210	101	012	037	100 [4"]	1448	365	69

If this connection is supplied with an EHEDG-certified device, the device nominal sizes must correspond with the connection nominal sizes!

All dim's in mm ISO Projection Method E

Fig. 43: Dimensions, Compact Design, Tri-Clamp DIN 32676 "G" to "K"

Dimensions, Remote Design, Tri-Clamp DIN 32676 "G" to "K"

1	Meter S	Size		Proc	ess Conn's	L -5	G	F	В	A	R	Weight
DN	(Size)	Inch				± 3						[kg]
			DN	25	[1"]	842					242	17
40	("G")	1-1/2	DN	40	[1-1/2"]	748	374	129	64	90	195	17
			DN	50	[2"]	913					278	18
			DN	40	[1-1/2"]	1012					275	27
50	("H")	2	DN	50	[2"]	913	403	148	80	110	225	26
			DN	65	[2-1/2"]	1073					305	27
			DN	50	[2"]	1192					335	36
65	"I"	2-1/2	DN	65	[2-1/2"]	1073	429	164	97	130	275	37
			DN	80	[3"]	1180					328	38
			DN	65	[2-1/2"]	1302					378	45
80	("J")	3	DN	80	[3"]	1180	456	186	108	140	296	44
			DN	100	[4"]	1448					430	46
100	("K")	4)	DN	80	[3"]	1598	500	215	131	170	440	71
			DN	100	[4"]	1448					365	69

If this connection is supplied with an EHEDG-certified device, the device nominal sizes must correspond with the connection nominal sizes!

Fig. 44: Dimensions, Remote Design, Tri-Clamp DIN 32676 "G" to "K"

Dimensions, Remote Design, MS21

Fig. 45: Dimensions, Remote Design, MS21 DN 3 [1/8"], DN 6 [1/4"]

Fig. 46: Dimensions, Remote Design, MS21 DN 1.5 [1/16"]

Dimensions, Converter Field Mount Housing, Rectangular

Fig. 47: Dimensions, Converter Field Mount Housing, Rectangular

Ordering information

O a via lia Maa				Vorient digit No	1.4	F	6	7	0	0	10	1 11		2 44		1	
Coriolis Mass	s Flowmeter				. 1-4 MO0	5		<i>'</i>	0	9	IU		. к		·		
FCINIZUUU-INIC	,2			Catalog No		_						_	_				
Design																	
Remote desig	n					1											
Compact (Inte	egral) design					3											
Ex, remote de	esign, ATEX, FN	1 Class I, Div.	1		3) 4)	6											
Ex, compact ((Integral) desigr	n, ATEX, FM C	lass I, Div. 1			7											
Explosion Pr	otection / Con	nection / Am	bient Tempe	rature													
none / connec	tion M20 x 1.5	/ Standard					Α										
none / connec	tion NPT 1/2 in	. / Standard					Т										
none / connec	tion M20 x 1.5	/ extended -40	60 °C			1)	U										
none / connec	tion NPT 1/2 in	. / extended -4	0 60 °C			1)	Х										
ATEX / conne	ction M20 x 1.5	/ Standard				2)	В										
ATEX / conne	ction M20 x 1.5	/ extended -4	О 60 °С			2)	Е										
FM Class I, D	iv. 1, Zone 1 / c	onnection NP	Г 1/2 in. / Stan	dard		2)	С										
FM Class I, D	iv. 2, Zone 2 / c	onnection NP	Г 1/2 in. / Stan	dard			0										
FM Class I, D	iv. 1, Zone 1 / c	onnection NP	Г 1/2 in. / exte	nded -40 6	0°C	2)	Υ										
FM Class I, D	iv. 2, Zone 2 / c	onnection NP	Г 1/2 in. / exte	nded -40 6	0°C	1)	V										
Certificate, m	naterial / press	ure tests															
Standard	-							1									
EN 10204 3.1	В							2									
Material certifi	icate 3.1.B + pre	essure test AD	-2000					3									
Pressure test	per AD-2000							4									
Certificate NA	CE material							5									
Certificate NA	CE + Pressure	test						6									
Tube materia	al							-									
CrNi 1.4571 /	316Ti (Stainless	s Steel)							1								
1.4435 (316L)	EHEDG design	only with pro	cess connecti	ion DIN 1185	1 or Tri-Cla	mp			3								
,	g.	and size "E"	"J"	(DN 20	DN 80. 3/4	3	in.)		-								
Hastellov C4	(2.4610)	only DIN PN	40 / ASME CL	_ 150	,.,.		,		4								
	(=:::::)	and size "F"	"K"	(DN 20 D	N 100, 3/4	4	in.)		•								
Measuring ra	nge	Max. measu	ring range	Size	Connecti	ion s	size										
ka/min	lbs./min	ka/min	lbs./min	0.20	••••••												
075	0165	0 100	0220	"E"	DN 20	0.7	75 ir	۱.		Е	2 (
0 125	0275	0 160	0352	"F"	DN 25	1 ii	n.			F	2 :	5					
0365	0803	0475	01045	"G"	DN 40	1.5	5 in.			G	4 (
0 710	0 1562	0 920	0 2024	"H"	DN 50	2 ii	n			н	5 (
0 1450	0 3190	0 1890	0 4158		DN 65	25	5 in			1	6						
0 1890	0 4158	0 2460	0 5412	".]"	DN 80	3 ii	, n			.i	8 (5					
0 3200	0 7040	0 4160	0 9152	"K"	DN 100	1i	n. n			ĸ	1 1	í.					
0 8500	0 18700	0 11000	0 24200	" "	DN 150	6 ii	n.				1 6	:					
0 0500	0 165	0 100	0 220	"E"	DN 15	0 6	i. Sin			Ē	1 /	-	+	+			
0 75	0 105	0 160	0 220	"E"	DN 20	0.0	75 ir	,		F	2 (ζĮ.					
0 365	0 803	0 100	0 1045	"G"	DN 25	1 ii	0 II n			G	2	ίΙ.					
0 303	0 000	0 475	0 1043	- "Ц"		1 5	i. Tin			ц		ζĮ.					
0 7 10	0 1502	0920	0 2024			1.0) . ~				4 (χĮ.					
0 1450	0 3190	0 1090	0 4100	т и ји		21	1. Tim					<u>'</u>					
0 1890	04158	0 2400	0 0412	J "K"		2.5	o in. e			J		21					
0 3200	0 7040	0 4160	0 9152	<u> </u>		3	1. n				0	<u>'</u>	+	+			
0 /5	0100	0100	0220			11	11. Tim					2					
0 125	02/5		0	Г "С"		1.5	o iri. ~				4 (ίI					
0 305	0803	04/5	01045	G		21	1. 			G	5 (<u>'</u>					
0 / 10	0 1562	0920	02024	н		2.5	o in.					21					
0 1450	03190	0 1890	04158	1		3 11	1. -				0 (<u>'</u>					
101890	U 4158	0	U 5412			4 11	n. –					11		1	1		

1) only in combination with design code 3

2) only in combination with design code 7

3) with converter ME21 for non-hazardous area

4) FM in preparation

Continued on next page

Ordering information (continued)

Coriolis Mass Flowmeter	Variant digit No.	1-4	12	13	14	15	16	17	18	19	20	21			
ECM2000-MC2	Catalog No	MC2-							-						
Process connection	Outlaining No.	WICZ-	-	-	-										
Flange DIN PN 16			П												
Flange DIN PN 40			F												
Elange DIN PN 100		5)	Н												
Elange ASME CL 150		0)	P												
Elange ASME CL 300			0												
Elange ASME CL 600		6)	B												
Tri-Clamp acc. to DIN 32676		5)	U.												
Pipe connection acc. to DIN 11851		5)	v												
Housing (primary)		0)	<u> </u>		-										
Standard				1											
Housing as secondary containment 40 bar (565 psi)		5)	2											
Heating / Cooling			/	-											
without					1										
Calibration					-			-	_						
Elow forward ± 0.40 % of flow rate / density (± 5 g/l)						Δ									
Flow forward ± 0.25 % of flow rate / density (± 5 g/l)						B									
Flow forward ± 0.25 % of flow rate / density (± 5 g/l)				5)		c									
Flow forward ± 0.40 % of flow rate / density (± 3 g/l)				5)											
Flow forward ± 0.25 % of flow rate / density ($\pm 1.$ g/l)				5)											
Flow forward ± 0.15 % of flow rate / density (± 1.0 /l)				5)											
Flow forward/reverse ± 0.40 % of flow rate / density (± 1.9 /)	+ 5 a/l)			5)		G									
Elow forward/reverse ± 0.25 % of flow rate / density (± 5 g/l) ± 5 g/l)					Ц									
Flow forward/reverse ± 0.15 % of flow rate / density (± 5 g/l) ± 5 g/l)			5)											
Flow forward/reverse ± 0.40 % of flow rate / density (± 5 g/l) ± 1 g/l)			5)		'.									
Elow forward/reverse ± 0.25 % of flow rate / density (± 1 g/l) ± 1 g/l)			5)		л И									
Flow forward/reverse $\pm 0.25\%$ of flow rate / density (± 1 g/l)			5)											
Nome plate (Decumentation	± 1 9/1)			5)		L _		-	_						
Gormon															
English															
							E	^							
End of ordering information for remote design								Α							
End of ordering information for remote design,															
Operating mode / Seftware version										1				1	
Standard software (Mass and density measurement)									^						
Outpute additional to current output L (active) cont	act output (nassive	and con	tact	innı	ıt ()	0.26	civ	2)	^						
Current output II (passive) pulse output (active), conta	Ev not	t nocciblo)	Naci	inpu	JI ()	Jas	3100	-)		Δ					
Current output II (passive), pulse output (active)		t possible)	,												
Current output I (passive) current output II (passive)	nulse output (nas		nlv v	vith	MC	·07)		7)		Б					
Communication	, puise output (pas	55176) (0	illy v	VILII	IVIC	,21)		')							
without											0				
HABT protocol											1				
											2				
									7١		5				
PROFIBILS PA with M12 plug									')		7				
											. /				
High voltage 85 235 V AC															
Low voltage 24 V AC/DC												R R			
LOW VOILaye 24 V AU/DU												IV.	1	I	
A															
Accessories															

Price per meter D173D146U01

(10 m included in base price) Signal cable

5) not for size "L" (DN 150 / 6 in.) 6) not for size "L" (DN 150 / 6 in.). Size "K" (DN 100 / 4 in.) on request

7) in preparation

Ordering information

																	 	
Coriolis Mass Flowme	eter	Variant digit No.	1-4	5	6	7	8	9	10	11	12	13	14	15	16	17		
FCM2000-MS2		Catalog No.	MS2-															
Design																		
Remote design				1														
Application																		
Standard					Α													
Certificate																		
Standard						1												
Tube material																		
316L / 1.4435							3											
Measuring range [k	g/h]																	
0 65	DN 1.5							S										
0 250	DN 3							Т										
0 1000	DN 6							U										
Temperature version																		
max. 125 °C	(only DN 1.5)								1									
max. 180 °C	(DN 3 and DN 6)								2									
Process connection																		
G 1/4 in. ISO 228-1, PN	N 100									А								
1/4 in. NPT, ANSI / ASM	ME B 1.20.1, PN 100									в								
Flange DN 10, PN 40	(0)	nly DN 6)								С								
Flange 1/2 in., Class 15	50 (o	nly DN 6)								Т								
DN 10. DIN 11851. PN	40 (o	nlv DN 6)								м								
Construction	X	,																
Standard											1							
Heating / Cooling																		
without												0						
Calibration																		
0.40 % / 10 g/l	Forward flow												А					
0.25 % / 10 g/l	Forward flow												в					
0.15 % / 10 g/l	Forward flow												С					
0.40 % / 10 g/l	Forward / reverse flow	1											G					
0.25 % / 10 g/l	Forward / reverse flow	1											H					
0.15 % / 10 g/l	Forward / reverse flow	1																
Name plate																		
German														G				
English														E				
Design Level	(specified by ABB)														*			
Signal cable	with plug at primary																	
5 m	(1 ,															1	1	
10 m																2	1	
25 m																3	1	
50 m																4	1	

Ordering information

Coriolis Mass Flowmeter	Variant digit No.	1-4	5	6	7	8	9	10	11	12		
FCM2000-ME2	Catalog No.	ME2-										
Design (converter)												
Remote design in combination with flowmeter primary MC21	or MC26		1									
Remote design in combination with flowmeter primary MS2,	DN 1.5		2									
Remote design in combination with flowmeter primary MS2,	DN 3 and DN 6		3									
Explosion Protection / Connection / Ambient Temperat	ure											
none / connection M20 x 1.5 / Standard				А								
none / connection NPT 1/2 in. / Standard				Т								
FM Class I, Div. 2, Zone 2 / connection NPT 1/2 in. / Standa	ırd			0								
Housing												
Field housing, rectangular					3							
Operating mode / Software version												
Standard software (Mass and density measurement)						А						
Outputs												
additional to current output I (active), contact output	(passive) and con	tact input (pas	sive	e)							
Current output II (passive), Pulse output (active) (Ex no	t possible)						А					
Current output II (passive), Pulse output (passive)							В					
Communication												
without								0				
HART protocol								1				
PROFIBUS PA								3				
FOUNDATION Fieldbus						1)		5				
PROFIBUS PA with M12 plug								7				
Power supply												
High voltage 85 235 V AC									G			
Low voltage 24 V AC/DC									Κ			
Name plate								-				
German										G		
English										E		

1) in preparation

Questionnaire: Coriolis Mass Flowmeter FCM2000

Mr./Mrs./Ms.: Department: Telephone: Telefax: Fluid: Liquid component: Gas component: Flowrate: kg/h (Min, Max, Operating) kg/m³ Density: mPas / cP (Min, Max, Operating) mPas / cP (Min, Max, Operating) °C Min, Max, Operating) °C Min, Max, Operating) °C Ambient Temperature: °C (Min, Max, Operating) °C Ambient Temperature: °C (Min, Max, Operating) Steady Pulsating Batch Operation: □ Yes No Converter Design: □ Compact Remote Ex-Protection: □ Yes No Supply Power: High voltage: Low voltage: 24 VAC/DC, 50/60 Hz Electrical Outputs: □ Current output 1: 0/4-20 mA □ 24 VAC/DC, 50/60 Hz □ Pulse output, active □ HART □ Pulse output, passive Additional Specifications: □ □ □ □ □ <	Customer:	Date:	
Telephone: Telefax: Fluid: Liquid component: Gas component: Flowrate: kg/h (Min, Max, Operating) Density: kg/m³ (Min, Max, Operating) mPas / cP (Min, Max, Operating) mPas / cP (Min, Max, Operating) mPas / cP (Min, Max, Operating) °C Fluid Temperature: °C (Min, Max, Operating) °C Ambient Temperature: °C (Min, Max, Operating) Steady Flow: Steady Pulsating Batch Operation: Pess No Concentration Calculations: Yes No Concentration Calculations: Yes No Supply Power: High voltage: Low voltage: In 00 V to 240 V AC, 50/60 Hz 24 V AC/DC, 50/60 Hz 24 V AC/DC, 50/60 Hz Electrical Outputs: Current output 1: 0/4-20 mA Image: 24 V AC/DC, 50/60 Hz Quirent output 2: 0/4-20 mA Image: Image: Image: Image: Pulse output, active Image: Image: Image: Image: Image: <th>Mr./Mrs./Ms.:</th> <th>Department:</th> <th></th>	Mr./Mrs./Ms.:	Department:	
Fluid: Liquid component: Gas component: Flowrate: kg/h (Min, Max, Operating) kg/m ³ Density: kg/m ³ (Min, Max, Operating) mPas / cP (Min, Max, Operating) mPas / cP Fluid Temperature: °C (Min, Max, Operating) °C Ambient Temperature: °C (Min, Max, Operating) °C Ambient Temperature: °C (Min, Max, Operating) © Flow: □ Steady □ Pulsating Batch Operation: □ Yes □ No Concentration Calculations: □ Yes □ No Converter Design: □ Compact □ Remote Ex-Protection: □ Yes □ No Supply Power: High voltage: □ Low voltage: □ 100 V to 240 V AC, 50/60 Hz □ Communication: □ Communication: □ Current output 1: 0/4-20 mA □ Current output 2: 0/4-20 mA □ Current output 2: 0/4-20 mA □ Current output 2: 0/4-20 mA □ Pulse output, passive Additional Specifications: □ Pulse output, passive	Telephone:	Telefax:	
Fluid: Liquid component: Gas component: Flowrate: kg/h (Min, Max, Operating) kg/m³ Density: kg/m³ (Min, Max, Operating) mPas / cP (Min, Max, Operating) mPas / cP (Min, Max, Operating) mPas / cP (Min, Max, Operating) °C Fluid Temperature: °C (Min, Max, Operating) °C Ambient Temperature: °C (Min, Max, Operating) °C Pressure: bar (Min, Max, Operating) °C Flow: □ Steady Pulsating Batch Operation: □ Yes □ No Concentration Calculations: □ Yes □ No Converter Design: □ Compact □ Remote Ex-Protection: □ Yes □ No Supply Power: □ High voltage: □ Low voltage: □ 100 V to 240 V AC, 50/60 Hz □ 24 V AC/DC, 50/60 Hz □ 24 V AC/DC, 50/60 Hz Electrical Outputs: □ Current output 1: 0/4-20 mA □ Pulse output, active □ HART □ Pulse output, active □ HART □ Pulse output, p			
Flowrate: kg/h (Min, Max, Operating) kg/m ³ Density: kg/m ³ (Min, Max, Operating) mPas / cP (Min, Max, Operating) °C Fluid Temperature: °C (Min, Max, Operating) °C Ambient Temperature: °C (Min, Max, Operating) °C Ambient Temperature: °C (Min, Max, Operating) bar Flow: □ Steady □ Pulsating Batch Operation: □ Yes □ No Converter Design: □ Compact □ Remote Ex-Protection: □ Yes □ No Supply Power: High voltage: □ Low voltage: □ 100 V to 240 V AC, 50/60 Hz □ 24 V AC/DC, 50/60 Hz □ Communication: □ Current output 1: 0/4-20 mA □ Current output 2: 0/4-20 mA □ Current output 2: 0/4-20 mA □ Pulse output, active □ HART □ Pulse output, active □ HART □ Pulse output, active □ HART □ Pulse output, passive Additional Specifications: mminch	Fluid:	Liquid component:	Cas component:
Instruct Instruct Win, Max, Operating) kg/m³ Dyn, Viscosity: mPas / cP (Min, Max, Operating) °C Fluid Temperature: °C (Min, Max, Operating) °C Fluid Temperature: °C (Min, Max, Operating) °C Ambient Temperature: °C (Min, Max, Operating) Steady Flow: Steady Batch Operation: Yes Concentration Calculations: Yes Concentration Calculations: Yes Compact Remote Ex-Protection: Yes Supply Power: High voltage: 100 V to 240 V AC, 50/60 Hz 24 V AC/DC, 50/60 Hz Electrical Outputs: Current output 1: 0/4-20 mA Current output 2: 0/4-20 mA Communication: Pulse output, active HART Pulse output, active HART Pulse output, passive Additional Specifications: Pipeline diameter mminch	Elowrate:	ka/b	Gas component.
Ambient remperature: kg/m ³ Min, Max, Operating) mPas / cP Fluid Temperature: °C (Min, Max, Operating) °C Ambient Temperature: °C (Min, Max, Operating) °C Ambient Temperature: °C (Min, Max, Operating) °C Ambient Temperature: °C (Min, Max, Operating) bar Flow: □ Steady □ Pulsating Batch Operation: □ Yes No Concentration Calculations: □ Yes No Converter Design: □ Compact □ Remote Ex-Protection: □ Yes No Supply Power: □ 100 V to 240 V AC, 50/60 Hz □ 24 V AC/DC, 50/60 Hz Electrical Outputs: □ Current output 1: 0/4-20 mA □ Current output 2: 0/4-20 mA □ Pulse output, active □ HART □ Pulse output, active □ HART □ Pulse output, active □ Pulse output, passive Additional Specifications: mminch	(Min. Max. Operating)	Kg/TI	
(Min, Max, Operating) mPas / cP (Min, Max, Operating) °C Fluid Temperature: °C (Min, Max, Operating) °C Ambient Temperature: °C Pressure: bar (Min, Max, Operating) Batch Operating) Flow: □ Steady □ Pulsating Batch Operation: □ Yes □ No Concentration Calculations: □ Yes □ No Concentration Calculations: □ Yes □ No Concentration Calculations: □ Yes □ No Converter Design: □ Compact □ Remote Ex-Protection: □ Yes □ No Supply Power: □ High voltage: □ No voltage: □ 100 V to 240 V AC, 50/60 Hz □ 24 V AC/DC, 50/60 Hz Electrical Outputs: □ Current output 1: 0/4-20 mA □ Current output 2: 0/4-20 mA □ Current output 2: 0/4-20 mA □ Pulse output, active □ HART □ Pulse output, active □ HART □ Pulse output, passive	Density:	ka/m ³	
Dyn. Viscosity: (Min, Max, Operating) mPas / cP Fluid Temperature: (Min, Max, Operating) °C Ambient Temperature: (Min, Max, Operating) °C Pressure: (Min, Max, Operating) bar Flow: □ Steady □ Pulsating Batch Operation: □ Yes □ No Concentration Calculations: □ Yes □ No Concentration Calculations: □ Yes □ No Supply Power: □ High voltage: □ No Supply Power: □ 100 V to 240 V AC, 50/60 Hz □ 24 V AC/DC, 50/60 Hz Electrical Outputs: □ Current output 1: 0/4-20 mA □ Current output 2: 0/4-20 mA □ Pulse output, active □ HART □ Pulse output, passive Additional Specifications: □ Pulse output, passive □ HART	(Min, Max, Operating)	3	
(Min, Max, Operating) °C Fluid Temperature: °C (Min, Max, Operating) °C Ambient Temperature: °C Pressure: bar (Min, Max, Operating) bar Flow: □ Steady □ Pulsating Batch Operation: □ Yes □ No Concentration Calculations: □ Yes □ No Converter Design: □ Compact □ Remote Ex-Protection: □ Yes □ No Supply Power: □ High voltage: □ Low voltage: □ 100 V to 240 V AC, 50/60 Hz □ 24 V AC/DC, 50/60 Hz Electrical Outputs: □ Current output 1: 0/4-20 mA □ Current output 1: 0/4-20 mA □ Current output 2: 0/4-20 mA □ Pulse output, active □ HART □ Pulse output, active □ HART □ Pulse output, active □ HART □ Pulse output, passive	Dyn. Viscosity:	mPas / cP	
Fluid Temperature: °C (Min, Max, Operating) °C Ambient Temperature: °C Pressure: bar (Min, Max, Operating) bar Flow: □ Steady Batch Operation: □ Yes Concentration Calculations: □ Yes Concentration Calculations: □ Yes Ex-Protection: □ Yes Supply Power: High voltage: □ 100 V to 240 V AC, 50/60 Hz □ 24 V AC/DC, 50/60 Hz Electrical Outputs: □ Current output 1: 0/4-20 mA □ Current output 1: 0/4-20 mA □ Current output 1: 0/4-20 mA □ Pulse output, active □ HART □ Pulse output, active □ HART □ Pulse output, passive Additional Specifications: Pipeline diameter mminch	(Min, Max, Operating)		
(Min, Max, Operating) °C Pressure: (Min, Max, Operating) bar Flow: Steady Pulsating Batch Operation: Yes No Concentration Calculations: Yes No Converter Design: Compact Remote Ex-Protection: Yes No Supply Power: High voltage: Low voltage: I to V to 240 V AC, 50/60 Hz 24 V AC/DC, 50/60 Hz Electrical Outputs: Current output 1: 0/4-20 mA Current output 2: 0/4-20 mA Current output 2: 0/4-20 mA Pulse output, active HART Pulse output, active HART Pulse output, passive Additional Specifications:	Fluid Temperature:	C	
Ambient Temperature: °C Pressure: (Min, Max, Operating) bar Flow: Steady Pulsating Batch Operation: Yes No Concentration Calculations: Yes No Concentration Calculations: Yes No Converter Design: Compact Remote Ex-Protection: Yes No Supply Power: High voltage: Low voltage: 100 V to 240 V AC, 50/60 Hz 24 V AC/DC, 50/60 Hz Communication: Electrical Outputs: Current output 1: 0/4–20 mA Communication: Current output 2: 0/4–20 mA Current output 2: 0/4–20 mA HART Pulse output, active HART Pulse output, passive	(Min, Max, Operating)		
Pressure: (Min, Max, Operating) bar Flow: Steady Pulsating Batch Operation: Yes No Concentration Calculations: Yes No Converter Design: Compact Remote Ex-Protection: Yes No Supply Power: High voltage: Low voltage: 100 V to 240 V AC, 50/60 Hz 24 V AC/DC, 50/60 Hz Electrical Outputs: Communication: Current output 1: 0/4-20 mA Communication: Pulse output, active HART Pulse output, active HART Pipeline diameter mminch	Ambient Temperature:	°C	
(Min, Max, Operating) Flow: □ Steady □ Pulsating Batch Operation: □ Yes □ No Concentration Calculations: □ Yes □ No Converter Design: □ Compact □ Remote Ex-Protection: □ Yes □ No Supply Power: □ High voltage: □ Low voltage: □ 100 V to 240 V AC, 50/60 Hz □ 24 V AC/DC, 50/60 Hz Electrical Outputs: □ Current output 1: 0/4-20 mA □ Current output 1: 0/4-20 mA □ HART □ Pulse output, active □ HART □ Pulse output, passive Additional Specifications: Pipleline diameter mminch	Pressure:	bar	
Flow: □ Steady □ Pulsating Batch Operation: □ Yes □ No Concentration Calculations: □ Yes □ No Converter Design: □ Compact □ Remote Ex-Protection: □ Yes □ No Supply Power: □ High voltage: □ Low voltage: □ 100 V to 240 V AC, 50/60 Hz □ 24 V AC/DC, 50/60 Hz Electrical Outputs: □ Current output 1: 0/4–20 mA □ Current output 2: 0/4–20 mA □ HART □ Pulse output, active □ HART □ Pulse output, passive Additional Specifications: Pipleline diameter mminch	(Min, Max, Operating)		
Batch Operation: I Yes No Concentration Calculations: I Yes No Converter Design: Compact Remote Ex-Protection: Yes No Supply Power: High voltage: Low voltage: I 100 V to 240 V AC, 50/60 Hz 24 V AC/DC, 50/60 Hz Electrical Outputs: Communication: I Current output 1: 0/4-20 mA Communication: I Pulse output, active HART I Pulse output, passive Additional Specifications: Pipleline diameter mminch	Flow:	□ Steady	Pulsating
Concentration Calculations: Yes No Converter Design: Compact Remote Ex-Protection: Yes No Supply Power: High voltage: Low voltage: 100 V to 240 V AC, 50/60 Hz 24 V AC/DC, 50/60 Hz Electrical Outputs: Communication: Current output 1: 0/4–20 mA Communication: Pulse output, active HART Pulse output, active HART Pulse output, passive Additional Specifications: Pipeline diameter mminch	Batch Operation:	□ Yes	□ No
Converter Design: □ Compact □ Remote Ex-Protection: □ Yes □ No Supply Power: □ 100 V to 240 V AC, 50/60 Hz □ 24 V AC/DC, 50/60 Hz Electrical Outputs: □ Current output 1: 0/4–20 mA □ Current output 2: 0/4–20 mA □ Pulse output, active □ HART □ Pulse output, passive Additional Specifications: Pipeline diameter mminch	Concentration Calculations:	Yes	□ No
Ex-Protection: Yes No Supply Power: High voltage: Low voltage: 100 V to 240 V AC, 50/60 Hz 24 V AC/DC, 50/60 Hz Electrical Outputs: Communication: Current output 1: 0/4–20 mA Communication: Current output 2: 0/4–20 mA Pulse output, active HART Pulse output, passive Additional Specifications: Current output 1: noch	Converter Design:	Compact	Remote
Supply Power: High voltage: Low voltage: Image: 100 V to 240 V AC, 50/60 Hz Image: Electrical Outputs: Communication: Image:	Ex-Protection:	□ Yes	□ No
Electrical Outputs: Image: 100 V to 240 V AC, 50/60 Hz Image: 24 V AC/DC, 50/60 Hz Electrical Outputs: Image: Communication: Image: Communication: Image: Current output 1: 0/4–20 mA Image: Current output 2: 0/4–20 mA Image: Current output 2: 0/4–20 mA Image: Current output 2: 0/4–20 mA Image: Pulse output, active Image: HART Image: Pulse output, passive Image: HART Image: Pipeline diameter Image: Image: Current output 2: 0/4–20 mA Image: Pipeline diameter Image: Current output 2: 0/4–20 mA	Supply Power:	High voltage:	Low voltage:
Electrical Outputs: Communication: □ Current output 1: 0/4–20 mA □ Current output 2: 0/4–20 mA □ Pulse output, active □ Pulse output, active □ Pulse output, passive		□ 100 V to 240 V AC, 50/60 Hz	24 V AC/DC, 50/60 Hz
Current output 1: 0/4–20 mA Current output 2: 0/4–20 mA Pulse output, active Pulse output, active Pulse output, passive	Electrical Outputs:		Communication:
Current output 2: 0/4–20 mA Pulse output, active Pulse output, active Pulse output, passive		Current output 1: 0/4–20 mA	
Additional Specifications: Pulse output, active HART Pipeline diameter		Current output 2: 0/4–20 mA	
Additional Specifications: Pipeline diameter		Pulse output, active	☐ HARI
Additional Specifications: Pipeline diameter	Additional Crasifications:	Pulse output, passive	
	Pipeline diameter	mm inch	
Process connections	Process connections	· · · · · · · · · · · · · · · · · · ·	

ABB has Sales & Customer Support expertise in over 100 countries worldwide.

www.abb.flow

The Company's policy is one of continuous product improvement and the right is reserved to modify the information contained herein without notice.

Printed in the Fed. Rep. of Germany (12.2006)

© ABB 2006

 ABB Ltd.

 Oldends Lane, Stonehouse

 Gloucestershire, GL 10 3TA

 UK

 Tel:
 +44(0)1453 826661

 Fax:
 +44(0)1453 829671

 ABB Inc.

 125 E. County Line Road

 Warminster, PA 18974

 USA

 Tel:
 +1 215 674 6000

 Fax:
 +1 215 674 7183

ABB Automation Products GmbH

Dransfelder Str. 2 37079 Goettingen GERMANY Tel: +49 551 905-534 Fax: +49 551 905-555

CCC-support.deapr@de.abb.com