PATTERSON BALL MILLS FEATURE: • Roller or babbited bearings. • Jacket for temperature control. • Vent and sampling outlet. • Trunnion, head or door, laten. • Dustless discharge bearing for dry minding.

IQR

- grinding. 2 Bak

MOUNTED Patterson eng decide wheth neers can help you ge overhead or floor moun best answer your mater situation. ted mills was

LAND PEBBLE

For certain applications, Petterson field engineers recommend the sim-plicity, competities and low mainte-nance, features of these mills. Ring gears and pinions have bean elimi-nated by a torque arm drive. The con-struction of cylinders is the same as other. Patterson mills, but sizes are limited in steet beil models to 3°6° 1.4° and in limed mills to 4° x 5°. The "J" in type designation stands for term yre 3 P. Martin

STEEL BALL MILLS

Patterson manufactures a complete line of ball mills for every wet or dry grinding process for size reduction, and for dispersion and defloculation in solid-liquid systems. Sizes range from 10 to 6,000-gallon capacities. In addition to outstanding performance of the machines themselves, Patterson offers experienced engineering analysis of your individual problems to help increase production at reduced costs. This analysis can be invaluable in proper mill selection and arrangement, in modernization of existing mill rooms. There is no obligation when you consult with Patterson's engineering department.

TYPICAL STEEL BALL MILL LOADING FOR WET GRINDING

331/3 % STEEL BALL CHARGE --- MILL SPEED 50% OF CRITICAL (Nc)--Material to Void Ratio 3.5:1

Ì	Mill Size	MA	TERIAL	CHAR	GE-GA	LS		BALL C	HARGE		Critical
	(Dia. x Length)							Dis	splaceme	ent	Speed
	1					Steel	9				(Nc)
	l	ity.		L	etical olume	• ب	s) to Flan	G	ials. at 3	3¼% V	ol.
		Paste Capac Typica	Option Dilutio Additio	Paste Plus Dilutio	Theore Total Mill Vo	Lbs. a 33½% Volum	Depth (Inche Top of	Balls	Voids	Total	
	15" × 21" 21" × 28" 2' × 3' 3' × 4' 3'6" × 5' 5' × 4' 5' × 6' 6' × 5' 6' × 8' 6' × 8' 6' × 10'	7 19 30 55 92 125 203 256 385 460 730 907	5 13 21 38 62 85 137 173 258 309 492 610	12 32 51 93 154 210 340 429 643 769 1222 1517	17 42 68 124 205 281 455 575 863 1032 1640 2035	223 564 912 1660 2750 3760 6085 7693 11538 13790 21900 27200	10 14 20 24 27 32 39 39 47 47	3 9 14 25 41 57 93 117 176 210 333 414	2 9 16 27 37 59 75 112 134 214 264	5 14 23 41 68 94 152 192 288 344 547 678	68.4 58.5 54.6 48.9 44.2 38.6 34.5 31.5 31.5 31.5 31.5

MATERIAL CHARGE: The volume of paste charge is dependent upon ball loading, speed of the mill, and the ease with which gases are removed from the pigment. The above chart shows typical paste charges based on $33\frac{1}{3}\%$ ball charge and mill speed at 50% of critical (Nc). With these conditions, paste capacity can range from a low of 14% to a high of 45% of theoretical total volume.

BALL CHARGE: Selection is dependent upon the length of time for the dispersion, the maximum permissible temperature, the range of batch sizes to be produced and the end product quality. Above chart shows weights and volumes for a ball charge of 33½% total mill volume. Patterson will gladly recommend the best combination of all factors to provide the most economical production of your particular product.

PEBBLE MILLS

Whatever the application in the grinding of solids in liquids to reduce size or to make a dispersion—and when the materials being processed cannot be contaminated by contact with iron—you will find a Patterson Pebble Mill precisely suited to your individual needs. Typical Patterson engineering refinements are in full evidence. An excellent example is Patterson's "Ceramiface" Door and Frame which eliminates all iron contamination of the product resulting from grinding action on metal door and frame. The blocks have an under-cut on one edge to cover completely the metal door flange and frame. A radius at the opening prevents chipping. Sizes range from 5 to 5,000-gallon capacities, in overhead or floor mounted models. Jacketing is available for controlled temperatures from below 0°F to 500°F, as are automatic thermal controls. Linings and grinding media furnished include high density Arlcite, standard density Porox, and Buhrstone. Porox, and Buhrstone

TYPICAL LINED MILL LOADING FOR WET GRINDING 50% CERAMIC BALL CHARGE -- MILL SPEED 60% OF CRITICAL (NC) -- Material to Void Ratio 1.8:1

		MATER		ARGE-	-GALS.		BA		HARGE			Cuiti
Mill Size (Dia. x Length)		iy	ā - F		tical ume	50%	50%	to Top ge	Dis Gal. a	placem t 50% V	ent	cal (Nc) Speed
		Paste Capaci Typical	Option: Dilution Additio	Paste Plus Dilution	Theore Total Mill Vol	Arlcite Lbs. at Volume	Porox Lbs. at Volume	Depth of Flan	Balls	Voids	Total	
15" x 21" 21" x 28" 2' x 3' 2'6" x 3'6"	UNING	4 10 17 33	3 8 15 29	7 18 32 62	10 28 50 97	86 232 408 797	59 170 301 587	9 12 13 16	3 9 15 30	2 5 10 18	5 14 25 48	70.7 60.0 56.0 49.7
3' x 4' 3'6" x 4'0" 4' x 5' 5' x 4' 5' x 6' 6' x 5' 6' x 8' 6' x 10' 8' x 5'	2" LINING	53 74 127 161 249 303 495 625 677	46 65 110 141 218 264 433 545 591	99 139 237 302 467 567 928 1170 1268 2161	153 216 369 469 775 881 1441 1817 1971 2357	1263 1780 3038 3867 5975 7255 11877 14975 16237 27661	930 1311 2237 2847 4401 5344 8746 11028 11957 20370	19 225 31 38 38 38 50	47 66 122 143 222 268 431 554 603	30 42 62 91 141 172 289 345 383 651	77 108 184 234 363 440 720 908 986 1679	45.5 42.0 39.1 34.8 34.8 31.7 31.7 27.3

MATERIAL CHARGE: The volume of paste charge is dependent upon ball loading, speed of the mill, and the ease with which gases are removed from the pigment. The above chart shows typical paste charges based on 50% ball charge and mill speed at 60% of critical (Nc). With these conditions, paste capacity can range from a low of 20% to a high of 45% of theoretical total volume.

BALL CHARGE: Selection is dependent upon the length of time for the dispersion, the maximum permissible temperature, the range of batch sizes to be produced and the end product quality. Above chart shows weights and volumes for a ball charge of 50% totai mill volume. Patterson will gladly recommend the best combination of all factors to provide the most economical production of your particular product.

PATTERSON PEBBLE, BALL AND TUBE MILLS

Patterson Pebble, Ball and Tube Mills are the most versatile of all fine grinders, and they are the most economical, for grinding efficiency is the result of the maximum grinding surface presented under the greatest pressure possible to apply. Grinding action is constant in these mills and the grinding surface of each ball or pebble is multiplied by the total number to a great effective area, thus presenting more grinding surface than is possible in any other type of grinder, the pressure applied also being greater per square inch of surface than in any other type of machine. No particle of material escapes this powerful reducing action. No other grinder can provide the complete uniformity of product at such low cost.

These Mills occupy less space per unit of output, use less power and require less labor than any other type of grinder. Maintenance costs are lower than with any other type of machine and the mills may be operated twenty-four hours per day for, usually little or no attention is required during the grinding operation. No adjusting or dressing of grinding surface is ever required and a uniform product is assured at all times.

In essence, Patterson Pebble, Ball and Tube Mills consist of a steel cylinder, sometimes lined with white Porox (porcelain), or with Berylite, or sometimes with buhrstone (Silex), sometimes unlined, or supplied with metallic linings of various kinds, and partially filled with a charge of Porox (porcelain) Balls, Berylite Balls, Pebbles or Steel Balls (depending upon the inside surface of the mill). The cylinder slowly rotates, each ball or pebble cascading, rolling, twisting, pressing and rubbing against its neighbor, the product passing between this grinding media. The heavy, freely moving grinding media is carried upward with the rotation of the mill, and when the highest point is reached, it tumbles and cascades down the inclined plane—thus employing the most efficient grinding principle known.

Patterson Pebble and Ball Mills are batch type machines. They are illustrated below. They are supplied in a wide range of types and sizes and are extensively used for the grinding of abrasives, chemicals, clay, drugs, enamel frit, glass, graphite, herbs, iron oxide, insect powder, oxides, paint, pigments, plastics, glaze, synthetic resins, ultramarine blue and many other products.

The Patterson Continuous Feed and Discharge Tube Mill shown below may be operated either in open circuit or in closed circuit with pneumatic or mechanical separators, screens, etc. for dry grinding, and with wet separating devices of various kinds for wet grinding. These mills are extensively used for the grinding of bauxite, barytes, carbon, chemicals, clay, colors, abrasives, feldspar, fluorspar, Fuller's earth, glass, graphite, gypsum, cement, iron oxide, minerals, mica, paper pulp, pigments, plastics, quartz, sand, sea coal, silica, slate, slag, slime, synthetic resins, whiting, calcium carbonate, foundry facings, metal powders, phosphate rock and many other materials.

PATTERSON BATCH TYPE PEBBLE AND BALL MILL See pages 5 to 25 PATTERSON CONTINUOUS FEED AND DISCHARGE BALL AND TUBE MILL See pages 26 to 34

4

PATTERSON PEBBLE AND BALL MILLS

(Batch Type)

DRY GRINDING

Half filled with balls or pebbles, the mill is charged through the door with the material to be ground, is rotated for the necessary time, grinding door exchanged for a slotted discharge door and the mill briefly rotated again to discharge the finished product. 25% of the mill's total volume is the accepted figure for operating capacity on dry materials.

WET GRINDING

Half filled with Porox balls or pebbles, or filled from one-third to one-half of its capacity with steel balls, the liquid is poured into the mill, used in sufficient quantity to reach the top of the ball charge, the dry materials are then added and the mill rotated for a given number of revolutions, then stopped—and the completely ground wet product is discharged through outlet valve or by means of wet discharge door. Operating capacity for wet grinding is 70% of the total volume where a 33-1/3%load of grinding media is used, or 60% where a 50% load of grinding media is used.

INSTALLATION

While mills may be placed on first floor level, it is usually desirable, when mills are placed on first floor, to elevate them sufficiently high to facilitate easy discharge. Mills may be charged from the floor above or from a platform over the mills. Usually these procedures are more satisfactory than elevators or conveyors. Sometimes when mills are placed on upper floors they discharge to floor below.

GRINDING OF RAW MATERIALS

Practically all metallic and non-metallic minerals may be ground in Patterson Batch type Mills. Where small quantities are to be handled, batch type mills are usually indicated. For grinding relatively small quantities of raw and calcined clay, these mills may be used economically, while they are clearly indicated for grinding ceramic bodies, glaze, frit, vitreous enamel, glass, flux, colors and chemicals.

All types of coatings for papers, oil cloth, window blinds and leather, as well as carbon paper coatings, shoe polish, pigmented goods of all kinds, whether liquid, semi-paste or heavy paste in consistency, are ground with ease and celerity.

Paint products are ground at approximately 50% of the cost of grinding on buhrstone mills and roller mills, while news, rotogravure, intaglio and job inks,

LIQUID AND SEMI-PASTE MIXERS (See Catalog 473) as well as show-card and typewriter ribbon inks, lithographic colors, etc. are produced in highest quality at low cost.

Aniline dyes, colors, oxides, graphite, natural and synthetic resins, pyrotechnics, abrasives, pigments, ultramarine blue, synthetic plastics, bituminous products are all ground at lowest cost.

CHEMICAL AND SPECIAL PROCESS WORK

Patterson engineers are men of infinite resource. Innumerable are the applications they can plan for you and almost limitless is the versatility of the Patterson mill. Grinding may be accomplished during heating, cooling, under vacuum or under pressure. Other performances are mixing, drying, chemical reaction, distillation and recovery of solvents, treating with gas or with other substances and a world of other process work.

Chemicals, drugs and pharmaceutical compounds are ground, processed and prepared in Patterson mills. Emulsions, ointments, salves and creams are easily produced by the Patterson-invented-patented process. Beauty clay, face powder, rouge and even lipstick fall in this category.

Food products are among the items prepared economically in Patterson mills, and products containing albumen, sugar, chocolate, dried meats and vegetables are processed at low cost.

Synthetic plastics, together with molding compounds of all kinds, scrap materials, etc. are ground and processed at greatly reduced cost.

MIXING

Patterson Batch type Mills may be used for mixing of many products. The Patterson Company also builds a complete line of Mixers which may be used either in connection with Patterson Mills or used individually. This line consists of Heavy Paste Mixers, Semi-paste Mixers and Liquid Mixers, as well as Blenders and other types of machines for dry mixing.

Wherever pre-mixing before grinding is necessary, or where thinning or mixing after the grinding of wet products is required or where it is desired to blend the product of a Patterson mill with other ingredients, either wet or dry, you will find a suitable Mixer illustrated in this Book. Below is shown the type of Mixer generally used for mixing and thinning semi-pastes and liquids, and the Blender usually selected for dry mixing or blending.

DRY MIXERS AND BLENDERS (See Catalog 473)

PATTERSON TYPE "D" PEBBLE OR BALL MILL

(Batch Type)

Showing Patterson Motor Drive with magnetic brake and inching device.

(Patented United States and Canada) (Other Patents Pending)

Interior of Patterson Pebble or Ball Mill lined with pure white Porox and with pure white Porox Balls used as grinding media.

Interior of Patterson Ball Mill—Unlined but fitted with extra heavy alloy steel shell with streamlined enlargements which act as lifters (patented). Either polished or unpolished Balls used as grinding media.

PATTERSON TYPE "DJ" PEBBLE OR BALL MILL (Batch Type)

Jacketed — Thermal Controlled

(Patented United States and Canada) (Other Patents Pending)

Jacketed, for providing controlled temperatures ranging from below 0° to 500° F. by the circulation of brine or other refrigerants for low temperatures, or hot water, steam, Dowtherm or hot oil for high temperatures, these versatile Patterson Type "DJ" Mills make possible the grinding, at low temperature, of materials having a low softening point, which would otherwise be impractical to grind, while, by the application of controlled heat, the consistency of materials having a relatively high melting point may be neutralized and the products easily ground.

Lipstick, carbon paper coatings and other pigmented wax bases are best handled by these Mills through the use of the Patterson-patented process. The plasticizing of various products and process work of many types may be successfully carried on. With these Mills it is possible not only to heat or cool the product, but mixing, drying, chemical reaction, distillation and recovery of solvents may all be accomplished during the grinding operation. Gas absorption, aerating and many other chemical processes are carried on in this mill under pressure or vacuum—all while the mill is in operation. With these machines it is possible to handle two or threestep processes with one machine.

Where the Type "DJ" Mill is used highly uniform viscosity is maintained throughout the grind and, through circulation of water through the jacket, temperatures sufficiently low to prevent the formation of gases are assured. Hence, there is no need for shutting down the mill for cooling and many costly troubles are thus eliminated, and it is possible to grind at lowest cost and with absolute assurance of high quality, products which must be kept cool during the grinding operation. Also, these mills when heated with hot water or oil, grind with record-breaking ease, extremely heavy pastes and other materials which solidify when cold.

PATTERSON HIGH SPEED BERYLITE MILL

(Batch Type)

(Patents Pending-U. S., Canada and Other Countries)

This new development in faster, fine grinding is the result of over ten years intensive research, experimentation and development. For the grinding of fine white synthetic enamels, light colored quick drying enamels and all white or light colored paint products, it marks the beginning of a new era in cost reduction in the paint and other industries. Not only does this new Mill cut grinding costs in half, but every vestige of contamination is, for the first time in high speed grinding, completely eliminated.

These new Mills are also most useful for the low cost grinding of vitreous enamels, glazes, synthetic compounds, chemicals, pharmaceuticals and other products which must be absolutely free from contamination and where fine grinding or intensive mixing or dispersion is necessary.

Examination of the history of Pebble, Ball and Tube Mills reveals that the Patterson Company has introduced all major improvements for the past fifty years. Now, without reservation, we believe this new development to be the most outstanding contribution, in the past quarter of a century, to the field of fine grinding. Here is a mill that will grind fine refrigerator whites and other synthetic enamels, including straight Urea Resin, Urea and Melamine, Alkyd Resin, modified Bakelite types, as well as practically all types of Vinyl Resin Coatings, Quick Drying Enamels, White Interior Finishes and White House Paints at a cost heretofore unheard of. These Mills are most useful too for the grinding of delicate colors, which are normally contaminated in steel mills, and for the grinding of hard pigments which cannot be ground in either porcelain lined mills or steel mills without contamination from lining and balls.

In the reduction of grinding costs, it is not enough to make the grinding media heavier. Patterson engineers have not stopped at that, but have developed

12

an entirely new mill. The interior design of this machine is different from that of any other grinder ever built for the grinding of fine products without contamination.

The Berylite lining is provided with integrally formed streamlined lifter bars that are carefully ground, lapped and polished. These streamlined lifters or protuberances carry the grinding media to much greater height for cascading. Thus turbulence is increased 73% without impeding free rolling movement of the balls, and there are no abrupt projections to grind off into the product. This lining is 50% more resistant to wear than our standard Porox or than any porcelain.

The Berylite Grinding Balls have a specific gravity more than 50% greater than Porox or porcelain, and nearly 50% greater than pebbles, consequently exerting over 50% greater pressure upon the product being ground. Consequently, the viscosity of the batch must be at least twice that of the ordinary pebble mill specification. These Berylite Balls are 1'' in diameter. In standard Porox or porcelain this would be too small to secure greatest grinding efficiency with products of high viscosity, but Berylite, being approximately 50% heavier than ordinary grinding media, will plow through highly viscous products and, at the same time, provide 73% greater grinding surface than a conventional mixture of $1\frac{1}{2}$ " and 2" balls or pebbles. In addition, the viscosity of the paste being ground is much higher than that at which it is possible to grind with either standard porcelain balls or flint pebbles. The overall result is an increase of 100% in grinding efficiency. In other words, grinding time is but half that required in either a porcelain or buhrstone lined mill with conventional lining and equipped with either porcelain balls or pebbles of conventional size.

Lining and Balls are non-metallic, white and noncontaminating. The lining has less than one-half the usual cement joints. The interior is streamlined and all joints are carefully ground and the entire interior of the mill is lapped before shipment. The balls also are all lapped and polished before shipment. This insures a product, the texture and gloss of which is equal to that produced by three passes on a roller mill.

Actual operating data on these mills prove that the saving is so great that the production cost, per pound of paste, is less than one-half that of either a three-roll or five-roll roller mill.

While these Mills are built in both Types "D" (unjacketed) and "DJ" (jacketed) construction, the "DJ" Mill, providing for controlled grinding temperature is, in practically every case, the better mill to buy.

The usefulness of these Mills is not confined to the Paint Industry, but this unit will show great saving in grinding cost on many products. Its use insures products absolutely free from contamination and in the Chemical and Process Industries, process work of many types may be successfully carried on with these machines, for it is possible not only to grind at controlled temperature, by heating or cooling during the grinding operation, but mixing, drying, chemical reaction, distillation, etc., may all be accomplished during the grinding operation. Gas absorption, aerating and many other chemical processes are carried on in this mill under pressure or vacuum---all while the mill is in operation. Particularly valuable is the ability of these Mills to handle in one operation what, with almost any other machine necessitates two and sometimes three step operations.

In outward appearance the design of the Berylite Mill has been streamlined and all abrupt edges and corners, which have a tendency to catch dust, grease, etc., have been eliminated. Integral bearing sockets and stands are now provided and position of pinion has been lowered and motor drive built lower and more accessible, with all vibration eliminated. Patterson Class III motor drives, with integral magnetic brakes are used.

A new charging door with combination door bar and seal breaking device (patented) has been provided. Loosening of one nut gains access to the door and as the door bar is swung back out of the way, seal is automatically broken, providing quick access to the mill.

PATTERSON GRINDING AND

CLASSIFYING EQUIPMENT

SPECIFICATIONS OF PATTERSON TYPES "D" AND "DJ" PEBBLE MILLS, HIGH SPEED BERYLITE MILLS AND HIGH SPEED CHROME MANGANESE MILLS (611 834)

	· ·			Wet Grindir	EA) LINEL	PEDDL	E MILLS	Dry Grinding	
Mill	To Cano	tal acity	Ball or	Dertel	8	Mill	Ball or Babble	Operating Cap.	
3120	U.S.	cu	Charge	Size	Motor	rpm	Charge	Dry Sand (at 100	Motor
15" x 21" 21" x 28" 24" x 36" 3' 0" x 3' 6" 3' 0" x 4' 0" 4' 6" x 3' 6" 4' 6" x 3' 6" 5' 0" x 4' 0" 5' 0" x 4' 0"	Gal. 38 78 140 200 346 302 400 442 689	1t. 5 10 19 27 46 40 53 59 92	1bs. 253 524 939 1335 2310 2018 2673 2954 4603	U.S. Gal. 23 47 84 120 207 181 240 265 413	Horsepower $1\frac{1}{2}$ 3 5 5 7 $1\frac{1}{2}$ 7 $1\frac{1}{2}$ 7 $1\frac{1}{2}$ 7 $1\frac{1}{2}$ 10 15	36 30 26 25 23 22 22 22 21	155. 253 524 939 1335 2310 2018 2673 2554 4663	155. per cu. (1.) 127 262 469 667 1155 1009 1336 1477 2302	Horsepower 3 5 7 ¹ / ₂ 10 10 15 15 25
6' 0'' x 5' 0'' 6' 0'' x 10' 0'' 8' 0'' x 10' 0'' 8' 0'' x 10' 0'' 8' 0'' x 10' 0'' 9' 6'' x 10' 0'' 9' 6'' x 10' 0'' 9' 6'' x 10' 0'' 9' 6'' x 12' 0''	839 1383 1748 2576 3246 3913 3684 4645 5601	112 185 234 344 434 523 493 621 749	5610 9248 11687 17218 21701 26155 24623 31050 37443	504 830 1049 1545 1948 2348 2210 2787 3361	15 20 25 40 50 60 60 90 100	19 19 17 17 17 15 15	5610 9248 11687 17218 21701 26155 24623 31050 37443	2905 4624 5943 8609 10851 13078 12311 15525 18722	25 40 50 75 100 125 125 150 200
			PC	DROX LI	NED PEBBI	LE MILL	S		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.8 27 43 87 153 216 323 469 725 880 1440 1816 2661 3346 4028 3793 4772 5746	1.3 3.5 6 12 20 29 49 43 57 63 97 118 192 243 356 447 538 507 638 768 20 49 63 97	59 162 261 524 921 1298 2215 1942 2556 2822 4361 5296 8666 10927 16011 20132 24234 22818 28458 34566 HI 1300 4000 6300	6 16 26 52 92 129 221 194 255 281 435 528 864 1090 1597 2008 2417 2275 2863 3447 CH SPEE 92 221 281 435 528 863 3447	3/4 1/2 3 5 7/2 7/2 7/2 7/2 10 15 20 25 40 50 60 60 60 90 100 D BERYLI 15 20 20	42 40 36 25 25 22 21 21 19 19 17 17 17 17 15 15 15 15 TE MILL 26 23 21 21	59 162 261 524 921 1298 2215 1942 2556 2822 4361 5296 8666 10927 16011 20132 24234 22818 28458 34556 S Depends upon Material	33 90 145 291 512 721 1231 1079 1420 1568 2423 2942 4815 6071 8895 11184 13463 12677 15948 19204 Depends upon material being ground.	1 1 ¹ /2 3 5 7 ¹ /2 7 ¹ /2 10 10 15 15 25 25 40 50 75 100 125 125 125 125 125 125 125 125
6' 0" x 5' 0" 6' 0" x 8' 0" 6' 0" x 10' 0" 6' 0" x 12' 0" 6' 0" x 14' 0"	880 1440 1816 2192 2568	118 192 243 293 343	7400 12400 15525 18650 21750	528 864 1090 1315 1540	25 30 40 50 60	19 19 19 	ground.		
	2000								
				Wet Grindin	ig i i i i i i i i i i i i i i i i i i			Dry Grinding	
Mill Size	Tot Cape U.S. Gal.	tal acity Cu. ft. 2	Charge of Steel Balls lb. 224	Batch Size U.S. Gal. 11	Approximate Motor Horsepower	Mill Speed rpm 38	Charge of Steel Balls	Operating Cap. Based on lbs. of Dry Sand (at 100 lbs. per cu. ft.)	Approximate Motor Horsepower
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40 68 124 206 455 407 523 575 863 1032 1639 2035 2945 3643 4371 4149 5163 5163	6 9 17 28 61 54 70 77 115 138 219 219 219 272 394 487 584 555 690 828	558 942 1712 2837 6281 5610 7214 7963 11904 14240 22619 28079 40648 50273 60328 57255 71249 85499	28 48 87 144 197 319 285 366 403 604 722 1147 1424 2062 2550 3060 2904 3614 4337	$ \begin{array}{c} 1^{1/2} \\ 5 \\ 7^{1/2} \\ 7^{1/2} \\ 10 \\ 10 \\ 15 \\ 15 \\ 25 \\ 30 \\ 40 \\ 50 \\ 125 \\ 150 \\ 200 \\ \dots \\ \dots$	36 32 26 23 19 18 18 17 17 17 15 15 15 15 14 14 14 12 12 12	Depends upon Material being ground.	Depends upon material being ground.	Depends upon material being ground.

Note: Capacities given above represent optimum operating conditions on from thin to medium semi-paste consistency. Many products are ground more economically in smaller batches of heavier paste consistency. This is particularly true of fairly heavy lacquer paste, urea, vinyl resin and other pastes. On these heavier pastes or products of higher viscosity, batch size or operating capacity is generally less. Horsepowers specified are approximate and are based on capacities shown. Reduction in batch size, increase in consistency or a combination of both factors will, in some instances, increase horsepower. It is always best to consult with our Engineers on every specific problem to obtain most economical horsepower recommendation.

PATTERSON GRINDING AND

CLASSIFYING EQUIPMENT

DIMENSIONAL INFORMATION

	Floor Spac	e Required		Clearc	ince of			Pulley		Main I	Bearing
Mill	Bolt Drive	Motor Drive	Height	Shell Bottom	from of Stand	Extension of Outlet	Siza	Style	Dia. Drive	Diam	Longth
0126	Den Drive	MOIOT DIIVE	Mill	D	DJ	Valve	DIZE	DIAIO	Shaft	Diam.	rendm
15" x 21"	2'7" x 5'0"	3'0" x 4'9"	315"	191/8"	1713"		12 × 3	T. & L.	1"	2″	4"
21″x 28″	2'11" x 5'8"	3'0'' x 5'3''	4′0″	205⁄8″	191/4"		15 x 4	T. & L.	11/4″	2"	4″
24″x 36″	3'10" x 7'1"	3'5" x 6'0"	3/6//	10 2 "	811 "	53/4"	18 x 5	T. & L.	11/2"	4″	5″
2'6" x 3'6"	4'7" x 8'0"	4'1" x 7'0"	4'4"	14"	11 ³ ⁄4″	53/4"	24 x 6	T. & L.	21/2"	6″	6"
3′0″ x 4′0″	5'2" x 8'10"	4'7" x 7'7"	5/0//	143/4"	12 7 "	53/4"	24 x 6	T. & L.	21/2"	8″	6″
3′6″ x 4′0″	5'9" x 8'10"	4'2" x 7'6"	5'2"	113/4"	9,7, ″	53/4"	24 x 6	T. & L.	21/5"	8″	6″
4'0" x 5'0"	6'6" x 10'0"	6'0" x 9'5"	5'6"	101/4"	718"	63/4"	24 x 6	T. & L.	3″	10"	8"
4'6" x 3'6"	7'0" x 8'6"	6'0" x 9'0"	6/6//	1513"	133/9"	63/4"	24 x 6	T. & L.	3"	10"	8"
4'6" x 4'6"	7'0" x 9'6"	6'0" x 10'0"	6'6"	151."	133/4"	63/4"	24 x 6	T. & L.	3"	10"	8″
5'0" x 4'0"	7'6" x 9'7"	6'7" x 8'9"	7'6"	21 1 "	193/4"	63.4"	30 x 8	T. & L.	3"	12"	10"
5'0" x 6'0"	7'6" x 11'7"	6'7" x 10'9"	7'6"	2144 "	193/8"	63,4"	30 x 8	T. & L.	3"	12"	10"
6'0" x 5'0"	9'6" x 10'8"	8'0" x 10'6"	9/2//	27 💱 ″	25 . "	8″	48 x 12	Plain	31/2"	14"	12"
6'0" x 8'0"	9'6" x 13'8"	8'0" x 13'9"	9/2"	27	25 . "	8″	48 x 12	Plain	31/5"	14"	12"
6'0" x 10'0"	9'6" x 15'8"	8'0" x 15'7"	9'2"	27 (i ″	25 🖔 🗥	8"	48 x 14	Plain	31/2"	14"	12"
8'0" x 8'0"	12'1" x 15'2"	12'6" x 18'0"	- -	- 16	•	•	60 x 16	Plain	6″	28″	20″
8'0" x 10'0"	12'1" x 17'2"	12'6" x 20'0"	•	*	•	•	60 x 16	Plain	6″	28"	20"
8'0" x 12'0"	12'1" x 19'2"	12'6" x 22'0"	*	*	•	•	60 x 20	Plain	6″	28"	20"
9'6" x 8'0"	Motor	13'6" x 18'0"	*	+	٠	•	Mo	tor	8"	28"	20"
9'6" x 10'0"	Driven	13'6" x 20'0"	•	•	•	•	Driv	ven	8"	28"	20"
9'6" x 12'0"	Only	13'6" x 22'0"	+	•	•	•	On	ly	8″	28"	20″

NOTE: * According to piers.

All dimensions given are approximate.

SHIPPING WEIGHT OF MILLS-WITH GRINDING MEDIA (LBS.)

			Belt	Drive			1		Motor	Drive		
Mill Size	Buhrstone & Porox Lined		Berylite		Chrome Manganese		Buhrstone & Porox Lined		Berylite		Chrome Manganese	
	"D"	"DJ"	"D"	"DJ"	"D"	"DJ"	"D"	"DJ"	"D"	"DJ"	"D"	"DJ"
15" x 21" 21" x 28" 24" x 36" 26" x 36" 30" x 40" 30" x 40" 30" x 40" 50" x 50" 46" x 36" 46" x 36" 46" x 46" 50" x 60" 60" x 120" 60" x 120" 60" x 120" 80" x 80" 80" x 10" 80" x 10	1,200 1,500 2,800 4,600 6,500 9,000 11,900 12,800 17,000 27,500 33,500 37,500 * * 70,000 75,000 82,000 Mcc Dri	1,300 1,650 3,000 5,000 7,500 9,650 12,800 12,800 13,700 13,700 13,700 18,400 29,000 36,000 41,000 • • 74,500 75,500 87,500 stor ven	7,500 14,500 18,400 20,600 31,500 31,500 31,500 45,100 - 50,500 55,800	8,500 15,400 20,300 22,000 33,000 42,300 42,300 48,600 55,000 60,000	1,150 1,750 2,900 4,450 9,500 13,400 13,600 13,600 15,800 18,100 23,000 32,000 42,000 48,800 • • • * * * * * * * * * * * * * * * * *	1.250 1.900 3.100 4.950 8.200 10.150 14.300 14.200 14.200 24.400 33.500 24.400 33.500 44.500 52.300 * * 88.750 99.900 113.500 btor ven	1.100 1.500 3.100 4.800 6,600 9,400 12,400 12,400 13,100 16,000 18,200 27,500 36,500 * * * 71,000 * 85,000 * 100,000 * 100,000	1,200 1,650 3,300 5,300 7,600 10,500 12,600 12,600 14,200 17,900 19,600 29,000 34,500 40,000 + 80,000 + 80,500 + 105,000 + 115,600	7,600 15,000 21,800 31,500 38,300 44,100 50,000 56,000	8,600 15,900 20,400 22,200 33,000 40,800 40,800 46,600 54,500 60,200	1,500 2,300 3,500 7,850 10,300 14,400 16,500 19,200 24,000 34,000 34,000 44,000 50,500 + 95,200 + 107,200 + 107,200 + 121,000 + 139,400	1,600 2,450 3,700 5,500 8,850 10,950 14,900 15,000 17,600 21,100 25,400 35,500 46,500 54,000 + 99,200 + 112,700 + 126,000 + 145,000
*9'6" x 10'0"	Or	ven 11y				nly	<u>+121,500</u>	1126,500			157,000	1145,000

* Sole Plates are supplied in place of Bearing Stands. * * Additional information upon application. † Arranged for Motor Drive, but not including motor or drive.

CODE WORDS

Mill	Туре "D"		Ве: Тур	rylite e ''D''	Тур	e "DJ"	Berylite Type "DJ"	
Size	Belt	Motor	Belt	Motor	Belt	Motor	Belt	Motor
15" x 21"	Debaf	Demat			Dejak	Dojaj		
21" x 28"	Debag	Demag			Dejan	Dojak		
24" x 36"	Debal	Demal			Deiar	Dojar		
2'6" x 3'6"	Debam	Demam			Deiat	Dojat		
3'0" x 4'0"	Dehap	Demas	Bibap	Bimas	Deiav	Doiav	Bijav	Bijiv
3'6" x 4'0"	Debas	Demaw			Deiax	Dolax		
4'0" x 5'0"	Debbe	Demay	Bibbe	Bimay	Deiaz	Doiaz	Bijaz	Bijiz
4'6" x 3'6"	Debbo	Dembe			Deiba	Doiba		
4/6" x 4/6"	Debbu	Dembo			Deibi	Dolbi		
5'0" x 4'0"	Debce	Dembu	Bibce	Bimbu	Deiby	Doiby	Bilby	Bijbi
5'0" x 6'0"	Debco	Demce	Bibco	Bimce	Deici	Doica	Bilci	Bijca
6'0" x 5'0"	Debcu	Demco	Bibcu	Bimco	Deide	Doici	Bilde	Bijce
6'0" x 8'0"	Debda	Demcu	Bibda	Bimcu	Deido	Doido	Bijdo	Bildi
6'0" x 10'0"	Debdi	Demda	Bibdi	Bimda	Deidu	Doidu	Bijdu	Bijod
6'0" x 12'0"			Bibeb	Bimad			Bijab	Biiba
6'0" x 14'0"			Bibed	Bimod			Bilad	Bilbe
8'0" x 8'0"	Debeg	Demeg			Deject	Doiea		
8/0// x 10/0//	Debeb	Demer			Dejeb	Doleb		1
8/0// x 12/0//	Debec	Demec			Dejec	Doiec	1	1
9'6" x 8'0"	Debed	Demed			Dejed	Doied		
9/6// 2 10/0//	Debef	Demet			Dejet	Doief		
9/6" + 12/0"	Debeg	Demeg			Dejeg	Doieg		